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5
Power Series   
Taylor Series
Consider a function f(x) where its value and derivatives are known at x0. Try to evaluate the function at a “nearby” point x0 + h.

Try a power series expansion in  h about the point x0.

f ( x0 + h) = 
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Where the coefficients of 
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need to be determined.

Setting h=0 
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Next, differentiating (1) with respect to h

f’(x0+h) = 
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Setting h=0 
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Similarly 
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The general result 
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Hence Taylor series is

f(x0 + h) = 
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Valid for small 
[image: image10.wmf]h


The Taylor series about the origin (setting x0=0 and x=h) is the MacLaurin Series

MacLaurin Expansion
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e.g.

1)
f(x) = ex
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ex = 
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2) f(x) =  sin x 

[image: image14.wmf]Þ

f0(0) = 0

f1(x) = cos x

[image: image15.wmf]Þ

f1(0) = 1

f2(x) = -sin x
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f1(0) = 0

f3(x) = -cos x

[image: image17.wmf]Þ

f1(0) = -1

f4(x) = sin x
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f1(0) = 0
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Similarly 
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Hence, from 1 and 2
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Notes
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In order to have a MacLaurin expansion the derivative must exist, i.e. 
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has no derivative and no MacLaurin expansion.

The expansion for ex, cos x and sin x is valid for all x
The expansions 
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For a function of 2 variables

f(x,y) the Taylor Series is

f(x0+h, y0+k) = 
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Where all derivatives are evaluated at (x0,y0)
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Where D = 
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Convergence Of A Power Series 
The MacLaurin is an infinite power expansion.
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Where 
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We need to know whether the power series has meaning, i.e. if the infinite sum converges to a limit. In general convergence only occurs for a range of x values.

The formal way to define this is the partial series.
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If 
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exists we say the power series converges.
If 
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does not exist we say the power series diverges.

Is 
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Or better does 
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exist.

If it does then the sum converges.

If it does not then the sum diverges.

Note

A series may diverge because 
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increases without bound as N tends towards infinity, or does not approach a limit e.g. 
[image: image42.wmf]å

¥

=

-

0

)

1

(

n

n

is meaningless, as the partial sum oscillates between 0 and 1.
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Examples

1) Geometric Series
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Hence S = 
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For 
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 the limit does not exists and the series diverges.

Hence the MacLaurin series 
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is only valid for 
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2) A well known example of a divergent series is 
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Proof


[image: image51.wmf]...

2

1

2

1

2

1

1

1

)

8

1

...

8

1

(

)

4

1

4

1

(

2

1

1

1

)

8

1

...

5

1

(

)

4

1

3

1

(

2

1

1

1

...

4

1

3

1

2

1

1

1

1

1

1

1

+

+

+

+

>

+

+

+

+

+

+

>

+

+

+

+

+

+

=

+

+

+

+

=

å

å

å

å

¥

=

¥

=

¥

=

¥

=

n

n

n

n

n

n

n

n


Hence, diverges.


[image: image52.wmf]
Absolute And Conditional Convergence 
An infinite series 
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is convergent and said to be absolutely convergent provided 
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is also convergent. Absolute convergence implies convergence. (Note un could be complex).
e.g.

The series 
[image: image55.wmf]...
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Is convergent and absolutely convergent because
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Notes
If a series only contains real positive terms and is convergent, convergence and absolute convergence will be the same.

The series 
[image: image57.wmf]...
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 is convergent (via the Leibnitz Test), but is only conditionally convergent as it is convergent but its absolutely sum diverges (as 
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Below are 4 useful tests of convergence of 
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· A necessary but not sufficient condition is 
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· Comparison.
If 
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     Similarly if we find a divergent 
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· Leibnitz Text For Alternating Series

If a series is of the form 
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With
1)
Positive an


2)
an forming a decreasing sequence i.e. an+1 < an


3)
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Then it converges

e.g. 
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· Ratio Test

Comes from comparison test applied with 
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n

x


Let us suppose 
[image: image76.wmf]0

¹

n

u

for any value of n

Define 
[image: image77.wmf]n

n

n

u

u

L

1

lim

+

¥

®

=


If
 L < 1
Series is convergent


 L > 1
Series is divergent


 L = 0
Test fails

Examples
Use the ratio test to determine the convergence of various MacLaurin series:

1)



[image: image78.wmf]å

å

¥

=

¥

=

=

=

0

0

!

n

n

x

n

n

x

u

e

n

x

e



With 
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MacLaurin series convergent for all values of x
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With 
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         Then 
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 MacLaurin series convergent for all values of x
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With 
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MacLaurin series convergent for 
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MacLaurin series convergent for 
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5)

Find the full range of convergence of
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Ratio Test
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Series diverges if 
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Series converges if 
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The ratio test fails when x = 1, x = -1

For x = 1 Series becomes
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For x = -1 Series becomes
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Which converges (Leibnitz test)

So full range of convergence is 
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