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1 Functions And Limits
Basics
Definitions:


If two variables x and y follow a rule, “when x is given then y is determined as …”
Then y is said to be a function of x, this can be written as y=f(x):

Where x is the independent variable
and     y is the dependant variable. 

e.g. The area of a circle is a function of the radius as 
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Range And Domain

For a given set of x (the domain) there is a corresponding set of y values (the range).

e.g. 
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Domain:
0 < r < 2

Range:

0 < A < 4
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Notation
y=f(x) is the same as y=y(x)

Special Functions

Polynomials

A polynomial of the n degree is given by:
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Linear Functions (1st Degree Polynomial)
A linear function is of the form:
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y = a0 + a1x
                                                              x
The y-intercept is given by a0 and the gradient (slope) is given by a1
Quadratic Functions (2nd Degree Polynomial)

A quadratic function is either of the form:

y = a0 + a1x + a2x2  
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     a2 < 0
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Assuming 
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Assuming 
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Heaviside Step Function
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   Whenever (x) is negative H(x)=0

H(x-1) 


The derivative of H(x) is 
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the Dirac Delta Function and is 0 everywhere apart from one point where it is defined as tending towards infinity. 


The main use of this function is modelling on/off forces such as voltages: i.e.
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Modulus Function
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Even And Odd Functions

f(x) is even if f(x)=f(-x), i.e. it has symmetry about the y axis.

e.g. y=x2, x4, cos x

f(x) is odd if f(x)=-f(-x), i.e. it has pinhole symmetry, (The reflected function in y then x gives the same function).

e.g. y=x, x3, sin x
An even function multiplied by an even function gives an even function.

An odd function multiplied by an odd function gives an even function.

An even function multiplied by an odd function gives an odd function.

Functions need not be even or odd.

For even functions 
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For odd functions 
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Inverse Functions

A function y=f(x) can be inverted to get x in terms of y, i.e. x=g(y), hence g is the inverse of f.
e.g. Find the inverse of f(x)=x2 
where x >0.

So 
y=x2
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Thus the inverse 
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It does not matter what variable we use, the inverse could equally be stated as 
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 . N.B that the inverse function is the function reflected in the line y=x.


i.e.



Notation

The inverse function is often written as f-1(x)
Hence is f(x)=x2 
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Question:    What is f(f-1(x))
                    In above case f(x)=x2

Thus f(f-1(x)) = 
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                      = x

This is a general result 
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(for all) functions.

f(f-1(x) = x 

Function Of A Function
Given two functions: f(x) and g(x) one can calculate a function of a function.

e.g. If f(x)=x2 and g(x)=sin x.

Then f(g(x), (putting g into f) gives:
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Note that this is different to g(f(x)):
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Many Valued Functions
Consider y=sin x and its inverse y=sin-1x or y=arcsine x

For y=sin x there is only 1 value of y for each x.



However, for sin-1x for each value of x there are an infinite number of values for y. Hence we say that the principle value of sin-1 x lies in the domain of 
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, the same logic can be followed for y=cos-1x (y=arcos x).




Logarithms, Exponentials And Hyperbolic Functions

The natural logarithm, ln x or logex is defined as:
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From this it follows that
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Hence:
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Proof that 
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Introducing the variable s gives:
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Hence:
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It follows that:
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As x tends towards 0, y tends towards negative infinity.

As x tends towards infinity, y tends towards infinity.

Exponential Function
Consider x=ln y

What is the function such that y=f(x), i.e. the inverse of ln x.

Write
x1=ln y1
x2=ln y2

y1=f(x1)
y2=f(x2)
Hence
x1 + x2 = ln y1 + ln y2


= ln y1y2
Therefore y1y2=f(x1+x2)

Therefore f must satisfy:
f(x1)f(x2)=f(x1+x2)

This is only valid if f(x)=ax, where a is just some number.

To determine a, we must look at derivatives.
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So what value of a gives:
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The value is 2.71828183…
This is symbolised by e and is one of Euler’s numbers.

Hence the inverse of ln x is y=ex


Hyperbolic Functions
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  Even function
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 Odd function
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Odd function
Relationships Between Functions 
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Differentiation Of Hyperbolic Functions
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These similarities to trigonometric functions are not a coincidence as it can be shown that cosh ix = cos x

Inverse Hyperbolic Function
If

y = sinh-1 x
it means
x =sinh y

y = cosh-1x
it means
x = cosh y
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Limits And L’Hopitals Theorem

Consider 
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 this function is defined everywhere except at x=0, where the function becomes 0/0
However if you plot the function f(x) one can see it gets closer to 1 as x gets closer to 0.




Geometric Proof that 
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Consider a circle of radius 1:



                                                  A   D
                                                         tan x
                      x                         sin x
       O                cos x                    B

Area Of Triangle ODB > Area Of Sector OAB > Area Of Triangle OAB

½tan x               >
       ½x                >           ½sin x

Dividing by ½sin x gives:
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Now as 
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Notation
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Is the same as
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More generally we write the limit F of a function f(x) at a point x0 as:
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If 
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Many limits are trivial e.g.

f(x) = x,

g(x) = x+2
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Limits are non-trivial if 
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L’Hopital Rule

L’Hopital Rule is used to evaluate 0/0
For the limit 
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Then
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Note if f’(x0) and g’(x0) are still zero then:
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  etc

e.g.
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e.g.
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As 0/0 use L’Hopital 
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e.g.
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As 0/0 use L’Hopital
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Other Methods can be used 2 such are:
(1)
e.g.
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(2)
e.g.
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Other examples of tricky limits, not 0/0
e.g.
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Isolating the dominate terms gives:
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Cancelling
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e.g.
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Isolate the dominate term
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Factorise
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Using the binomial expansion for the expansions:
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e.g.
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� EMBED Equation.3  ���





Top, middle, bottom:





� EMBED Equation.3  ���





O is not zero but it means order, as coefficient is unimportant.
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