1. (i) Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=2 e^{-2 x}
$$

with $y(0)=1$ and $\frac{d y(0)}{d x}=-5$.
(ii) Show that the differential equation

$$
\left(2 x^{2}+y\right) \frac{d y}{d x}+\left(y^{3}-2 x y\right)=0
$$

is NOT exact, but can be made exact by multiplying by a suitable power of y. Hence, find the general solution of the equation.
2. (i) Solve the difference equation

$$
5 U(n+2)-4 U(n+1)-U(n)=0
$$

under the conditions

$$
U(1)=\kappa \quad \text { and } \quad U(n) \rightarrow 2 \quad \text { as } \quad n \rightarrow \infty
$$

where κ is a constant.

Show that

$$
U(n) \geq 0 \quad \text { for all } \quad n \geq 1 \text { if and only if } 0 \leq \kappa \leq 12
$$

(ii) For the logistic map

$$
x_{n+1}=a x_{n}\left(1-x_{n}\right) \equiv F\left(x_{n}\right)
$$

where a is constant and non-negative:
(a) Show that there is an attracting fixed point at $X_{1}=0$ for $0 \leq a \leq 1$ and at $X_{2}=1-\frac{1}{a}$ for $1<a<3$, each with FIRST order convergence.
(b) For the quadratic equation with roots X_{1}, X_{2} (as given in (a) above), construct the Newton-Raphson iterative process and show explicitly that it gives SECOND order convergence.
3. Two companies X, Y are exploring the possibilities for cooperation in their business activities. Measures of their levels of enthusiasm for this are given by $x(t), y(t)$ respectively, as functions of time t, where x, y can take positive and/or negative values.

The equations of motion are

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right)\binom{x}{y}
$$

(i) Show that the general solution for $x(t)$ is of the form

$$
x(t)=B_{1} e^{\lambda_{1} t}+B_{2} e^{\lambda_{2} t}
$$

and find λ_{1}, λ_{2}
(ii) From the results in (i) above, find $y(t)$ and show that the trajectories in the (x, y) phase plane are given by $(2 x-y)(x-2 y)^{2}=$ constant.
(iii) Sketch the (x, y) phase portrait of the system. For what ranges of initial enthusiasm $x(0), y(0)$ do the enthusiasms eventually increase without limit?
4. (i) Using the change of variables

$$
s=\frac{y}{x^{2}+y^{2}} \quad, \quad t=\frac{x}{x^{2}+y^{2}}
$$

show that

$$
\left(\frac{\partial \bar{u}}{\partial s}\right)^{2}+\left(\frac{\partial \bar{u}}{\partial t}\right)^{2}=\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right]\left(x^{2}+y^{2}\right)^{2}
$$

where $u=u(x, y) \equiv \bar{u}(s, t)$.
(ii) A closed rectangular box has edge lengths x, y, z. If the volume V of the box is kept fixed, find the edge lengths for the rectangular box which has the smallest surface area A.
(iii) Find the Taylor expansion (up to quadratic terms) for $f(x, y)=\sin (x+3 y)$ about the point $P\left(\frac{\pi}{6}, \frac{\pi}{6}\right)$. Find the direction in the (x, y) plane in which $f(x, y)$ increases most rapidly from P, and find the rate of increase in the direction $(2,1)$.
5. Given the curve $y=x^{\frac{1}{2}}$ from $x=0$ to $x=1$:
(i) Find the area under the curve bounded by the x axis and the line $x=1$.
(ii) Show that the arc length of the curve is $\frac{1}{2} \sqrt{5}+\frac{1}{4} \ln (2+\sqrt{5})$.
(iii) Find the mass of a plane lamina cut in the shape of the region (defined in (i) above) if the density of the lamina (i.e., mass per unit area) is $\sigma=\kappa x y$, with κ constant.
(iv) Find the position of the centre of mass of the lamina defined in (iii) above.

