1. (a) Solve

subject to y(0) = 0,¢'(1) =1
(b) Find the general solution of

2y — 3xy + 4y = 2*(Inz + 1)

2. (a) Using an eigenvector method find the general solution to the cou-
pled equations

dx
dt
y
dt

= —r—4y
= T — ’y
and sketch the phase portrait.

(b) Also find the general solution to the inhomogenous system
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3.

(a)

(b)

Using a recurrence relation method sum the series

An implicit equation for a function of two variables z = z(x,y) is
F(r,y,2) =0

Show that the partial derivative
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where F, = (0F/0x), .. Hence show
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Sketch the contours of

flz,y) =vy(z +y —2)

along which f is zero and indicate the regions where f is posi-
tive and negative. Locate the stationary points and deduce their
nature.

A function of two variables V' (x,y) is rewritten using new variables
s =x—y,t =x+y/2. Use the chain rule to establish the operator
relations.
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Hence show that the function

Viay) =fa—y)+g(a+5),

with f and ¢ twice differentiable functions, satisfies
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(a) Calculate the length of the curve

_a:4+ 1
y—4 82

between £ =1 and z = 2

(b) A uniform circular wire of radius R has a section of arc length 2[
cut from it.

Show that the position of the centre of mass of the remaining piece
of wire is at g = 0 and
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