1. (a) Solve

$$
y^{\prime \prime}=-x y^{2}
$$

subject to $y(0)=0, y^{\prime}(1)=1$
(b) Find the general solution of

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2}(\ln x+1)
$$

2. (a) Using an eigenvector method find the general solution to the coupled equations

$$
\begin{aligned}
& \frac{d x}{d t}=-x-4 y \\
& \frac{d y}{d t}=x-y
\end{aligned}
$$

and sketch the phase portrait.
(b) Also find the general solution to the inhomogenous system

$$
\binom{\dot{x}}{\dot{y}}-\left(\begin{array}{rr}
-1 & -4 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{2}{3} t
$$

3. (a) Using a recurrence relation method sum the series

$$
S(n)=\sum_{r=1}^{n} r^{3}
$$

(b) An implicit equation for a function of two variables $z=z(x, y)$ is

$$
F(x, y, z)=0
$$

Show that the partial derivative

$$
\left(\frac{\partial z}{\partial x}\right)_{y}=-\frac{F_{x}}{F_{z}}
$$

where $F_{x}=(\partial F / \partial x)_{y, z}$. Hence show

$$
\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}=-1
$$

4. (a) Sketch the contours of

$$
f(x, y)=x y(x+y-2)
$$

along which f is zero and indicate the regions where f is positive and negative. Locate the stationary points and deduce their nature.
(b) A function of two variables $V(x, y)$ is rewritten using new variables $s=x-y, t=x+y / 2$. Use the chain rule to establish the operator relations.

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\frac{\partial}{\partial s}+\frac{\partial}{\partial t} \\
\frac{\partial}{\partial y} & =\frac{-\partial}{\partial s}+\frac{1}{2} \frac{\partial}{\partial t}
\end{aligned}
$$

Hence show that the function

$$
V(x, y)=f(x-y)+g\left(x+\frac{y}{2}\right)
$$

with f and g twice differentiable functions, satisfies

$$
V_{x x}-V_{x y}-2 V_{y y}=0
$$

5. (a) Calculate the length of the curve

$$
y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}}
$$

between $x=1$ and $x=2$
(b) A uniform circular wire of radius R has a section of arc length $2 l$ cut from it.

Show that the position of the centre of mass of the remaining piece of wire is at $\bar{y}=0$ and

$$
\bar{x}=\frac{R \sin l / R}{\pi-l / R}
$$

