Imperial College London

BSc and MSci EXAMINATIONS (MATHEMATICS)

January 2007

M1M1 (Test)
 Mathematical Methods 1

- Affix ONE label to each answer book that you use. DO NOT use the label with your name on it.
- Write your answers in a single answer book, using continuation books if necessary.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- The question in Section A will be worth $1 \frac{1}{2}$ times as many marks as either question in Section B.
- Calculators may not be used.

SECTION A

1. (a) What is the maximal domain of the real, (single-valued) function

$$
f(x)=\sin ^{-1}\left(e^{x}-1\right) ?
$$

Find the inverse function $f^{-1}(x)$ and express the even part of $f^{-1}(x)$ in as simple a form as possible.
(b) Explain what is meant by the statement: "The function $f(x)$ is differentiable at $x=a$."
Calculate from first principles the derivative of the function

$$
f(x)=\frac{1}{1+x} .
$$

(c) Sketch the curve

$$
y^{2}=\frac{4-x^{2}}{1-x^{2}} .
$$

You should identify any stationary points, but need not locate any points of inflection.
(d) Using any method, evaluate the limits

$$
\begin{array}{ll}
\text { (i) } & \lim _{x \rightarrow 2}\left(\frac{\sin ^{2} \pi x}{x^{3}-5 x^{2}+8 x-4}\right) \\
\text { (ii) } & \lim _{x \rightarrow \infty}\left(\frac{\sin x}{x}+\left(\frac{x+3}{x-1}\right)^{x}\right)
\end{array}
$$

(e) Find all complex solutions to the equations
(i) $e^{z}=-1+i$
(ii) $\quad 2 \operatorname{Re}(z) \operatorname{Im}(z)=|z|^{2}$
(f) Evaluate the definite integrals
(i) $\int_{0}^{1} \frac{\log \left(\tan ^{-1} x\right)}{1+x^{2}} d x$
(ii) $\quad \int_{0}^{1} \frac{x+2}{x^{2}+2 x+2} d x$

SECTION B

2. Show that if $y=\sinh ^{-1} x$ then

$$
y^{\prime}=\frac{1}{\sqrt{1+x^{2}}} \quad \text { and } \quad\left(1+x^{2}\right) y^{\prime \prime}+x y^{\prime}=0
$$

Differentiating this equation n times, show that for $n \geqslant 0$

$$
y^{(n+2)}(0)=-n^{2} y^{(n)}(0)
$$

and deduce that the Maclaurin series for y gives

$$
\sinh ^{-1}(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{(1)^{2}(3)^{2}(5)^{2} \ldots(2 k-1)^{2}}{(2 k+1)!} x^{2 k+1} .
$$

What is the radius of convergence of this series?
3. The function $y(x)$ satisifies the linear ordinary differential equation

$$
\frac{d y}{d x}+\frac{4 y \sin x}{5+4 \cos x}=\frac{3}{2}
$$

Find the general solution of this equation.

If in addition it is known that $y(0)=0$, show that

$$
y=(5+4 \cos x) \tan ^{-1}\left(\frac{1}{3} \tan (x / 2)\right) .
$$

