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1. The function f(x) is defined for positive values of x by

f(x) = x1/x.

(a) Write f(x) = exp[g(x)] for a suitable function g(x).

(b) Find the limits of f(x) as x→ 0 and as x→∞.

(c) Find the maximum value attained by f(x) for x > 0.

(d) Sketch the curve y = f(x) for x > 0.

(e) Find the first three terms in the Taylor series of f(x) about x = 1.

(f) Show that the negative values of x for which f(x) takes a real value are of the form

(2k + 1)/n where k and n are integers.

(g) Determine whether or not the integral

∫ ∞

0

(x+ 1) sin x

x3/2(x− π)
dx

exists (do NOT try to evaluate it.)

(h) Solve the differential equation

ex
dy

dx
= sinh x cos2 y.
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2. For some positive integer n, x and y are defined in terms of a parameter θ by

x = cos θ, y = cos(nθ).

(a) Using De Moivre’s Theorem and the Binomial Theorem, show that

y =

p∑

m=0

(
n

2m

)

xn−2m(x2 − 1)m,

where p is the largest integer with 2p 6 n and

(
k

l

)

denotes a binomial coefficient.

(b) Show that

sin θ
dy

dx
= n sinnθ

and hence that y(x) obeys

(1− x2)y′′ − xy′ + n2y = 0.

Using Leibniz’ formula, deduce that

y(k+2)(0) = (k2 − n2)y(k)(0) for k > 0,

where y(k)(0) denotes the k’th derivative of y with respect to x evaluated at x = 0.

If n is a multiple of 4 show that y(0) = 1 and y′(0) = 0. Hence find the Maclaurin series

for the function y(x) when n is a multiple of 4, including terms up to x4.

Verify that parts (a) and (b) give the same answer when n = 4.
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3. (a) Rolle’s theorem states that if h(x) is a continuous function, is differentiable in a < x < b

and if h(a) = h(b), then there exists a value ξ such that a < ξ < b and h′(ξ) = 0.

Given two differentiable functions f(x) and g(x), consider the function

h(x) = f(x) +mg(x)

where m is a suitably chosen constant. Use Rolle’s theorem to prove that provided

g(a) 6= g(b) there exists a ξ in a < ξ < b such that

f ′(ξ)

g′(ξ)
=
f(b)− f(a)

g(b)− g(a)
.

Deduce that if f(c) = 0 = g(c), then

lim
x→c

[
f(x)

g(x)

]

= lim
x→c

[
f ′(x)

g′(x)

]

,

assuming the latter limit exists.

(b) Using any method, find the limit

lim
x→0

[
1− cos x− sin x+ log(1 + x)

(1 + x3)1/2 − 1

]

.

(c) The functions f(x), fe(x) and fo(x) are defined by

f(x) =
1

1− x
= fe(x) + fo(x),

where fe is an even function and fo is an odd function. Sketch the three functions f , fe
and fo.

4. The function y(x) obeys the second order linear ODE, which you have not met before,

y′′ + a(x)y′ + b(x)y = c(x),

where a(x), b(x) and c(x) are given functions.

Suppose that y = f(x) is a solution of this equation when c(x) = 0. Use the substitution

y = f(x)u(x) to obtain an equation for u(x) in terms of a, b, c, and f . What kind of ODE

do you obtain if you write v(x) = u′(x)? Explain how to obtain the general solution for y(x)

in terms of integrals of known functions.

Show that y = x is a particular solution to the problem

x2y′′ − (x2 + 2x)y′ + (x+ 2)y = 0.

Hence find the general solution.
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