1. (a) State precisely what it means for a function $f(x)$ to be differentiable at $x=a$. If $f(x)$ and $g(x)$ are differentiable at $x=a$, prove from first principles that $(f g)^{\prime}=$ $f^{\prime} g+f g^{\prime}$.
(b) Evaluate the limit:

$$
\lim _{x \rightarrow 0} \frac{\log (1+\sin x)-x}{\exp \left(x^{2}\right)-\cos x}
$$

(c) Find an even function $f(x)$ and an odd function $g(x)$ such that

$$
f(x)+g(x)=2^{x} .
$$

Show that $f^{\prime}(1)=(\log 2) g(1)$ and hence or otherwise show that

$$
\lim _{x \rightarrow 1}\left(\frac{g(x-1)}{f(x)-f(1)}\right)=\frac{4}{3}
$$

2. (a) Find a formula for the $n^{t h}$ derivative of the function $f(z)=\log \left(z+\frac{1}{2}\right)$. Hence derive a series expansion of $f(z)$ about $z=0$, including the general term.

State the ratio test carefully, and derive the radius of convergence of this series.
(b) If $f(z)$ is as above and x is a real number, show that

$$
\Re e\left[f\left(\frac{1}{2} e^{2 i x}\right)\right]=\log |\cos x|
$$

where $\Re e$ denotes the real part, and find the corresponding imaginary part.
(c) Assuming the series expansion of part (a) is valid when $z=\frac{1}{2} e^{2 i x}$, obtain the relation

$$
x=\sin 2 x-\frac{1}{2} \sin 4 x+\frac{1}{3} \sin 6 x+\ldots(-1)^{(n-1)} \frac{\sin 2 n x}{n}+\ldots
$$

Comment on the behaviour of this expression when $x=0, \frac{1}{4} \pi, \frac{1}{2} \pi$ and $\frac{3}{4} \pi$.
3. (a) Sketch the graphs (i) $y=\tanh ^{-1}(x)$, (ii) $y=\tanh \left(x^{-1}\right)$ and (iii) $y=(\tanh x)^{-1}$.
(b) The differentiable function $f(x)$ is defined for $x \geqslant 0$ and is such that $f(x)>0$ and $f(x) \rightarrow 0$ as $x \rightarrow \infty$.

The functions g and h are then defined by

$$
g(x)=f(x) f\left(\frac{1}{x}\right) \quad \text { and } \quad h(x)=\frac{x f^{\prime}(x)}{f(x)}
$$

Show that

$$
\frac{x g^{\prime}(x)}{g(x)}=h(x)-h\left(\frac{1}{x}\right)
$$

If $h(x)$ is strictly decreasing $\left(h^{\prime}<0\right)$, show that $g(x)$ has precisely one stationary point in $x>0$, and find the value of x at which this occurs. By considering the sign of g^{\prime} determine the nature of this stationary point.

Hence give a rough sketch of the curve $y=g(x)$ in $x>0$.
4. (a) Use the substitution $t=\tan x$ to evaluate the integral

$$
I=\int_{0}^{\pi / 4} \frac{d x}{\varepsilon+\tan x} \quad \text { where } \quad 0<\varepsilon \ll 1
$$

Show that as $\varepsilon \rightarrow 0$

$$
I=-\log \varepsilon-\frac{1}{2} \log 2+O(\varepsilon)
$$

(b) An approximation to the integral is obtained as follows. Introduce a number c where $0<\varepsilon \ll c \ll 1$. Then

$$
I \simeq \int_{0}^{c} \frac{d x}{\varepsilon+x}+\int_{c}^{\pi / 4} \frac{d x}{\tan x}
$$

Justify the approximations made, and evaluate the resulting integrals. Show that the two methods give approximately the same result when $\varepsilon \ll 1$.
5. (a) The shape of a long icicle hanging from the ceiling is given by the function $R(z)$, where R is the radius of the circular cross-section at height z above the ground. It can be shown that in terms of an angle ψ, that

$$
\frac{d R}{d z}=\tan \psi \quad \text { and } \quad z=\frac{1}{\sin ^{4} \psi}
$$

Given that $R=0$ at $z=1$, show that

$$
R=\frac{4}{3}(\sqrt{z}-1)^{1 / 2}(2+\sqrt{z})
$$

(b) Find $y(x)$ satisfying

$$
\frac{d y}{d x}+e^{x} y=e^{x} \quad \text { with } \quad y(0)=0
$$

(c) Find $y(x)$ satisfying

$$
\frac{d y}{d x}=\frac{y}{x}+\tan \left(\frac{y}{x}\right) .
$$

