Imperial College

London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
 May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M1M1

Mathematical Methods I

Date: Wednesday, 10th May 2006 Time: $2 \mathrm{pm}-4 \mathrm{pm}$

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. (a) The function $f(x)$ is defined as

$$
f(x)=\cosh \left(x+x^{2}\right)
$$

(i) Write $f(x)$ as the sum of an even function and an odd function.
(ii) Find the first three non-zero terms in the series expansion of $f(x)$ about $x=0$.
(iii) Find the derivative of $f(x)$ from first principles.
(b) Sketch the curve defined by the relation

$$
y^{2}=x^{3}\left(1-x^{3}\right)
$$

carefully indicating any important features on your sketch.
2. (a) For any integer $n \geq 0$, define the integrals

$$
\begin{aligned}
& I_{n}=\int_{0}^{\infty} e^{-x} \cos n x d x \\
& J_{n}=\int_{0}^{\infty} e^{-x} \sin n x d x
\end{aligned}
$$

Show that

$$
I_{n}+i J_{n}=\frac{1}{1-i n} .
$$

Hence, or otherwise, find I_{n} and J_{n} as functions of n.
(b) Find the indefinite integral

$$
\int \frac{d \theta}{1+\cos \theta}
$$

(c) Find the indefinite integral

$$
\int \frac{d \theta}{1+\cos ^{2} \theta} .
$$

3. Define

$$
f(x)=\tanh ^{-1}(x) .
$$

(a) Find an expression for $f(x)$ in terms of the logarithm function.
(b) Hence, or otherwise, show that the n-th derivative of $f(x)$, for $n \geq 1$, is given by

$$
\frac{d^{n} f}{d x^{n}}=\frac{(n-1)!}{2}\left(\frac{(-1)^{n-1}}{(1+x)^{n}}+\frac{1}{(1-x)^{n}}\right) .
$$

(c) Find the complete Taylor series of $f(x)$ about $x=0$.
(d) Let the function $F(x)$ be defined by

$$
F(x)=\int_{0}^{x} f(x) d x .
$$

By using integration by parts to find $F(x)$ explicitly, show that

$$
F(1 / 2)=\log \left(\frac{3^{3 / 4}}{2}\right)
$$

4. (a) Find all complex roots of the equation

$$
\cosh z+2 \sinh z=1
$$

(b) Sketch all points z in the complex plane satisfying the equation

$$
\left|\frac{z-i}{z+i}\right|=c,
$$

where
(i) $\mathrm{c}=1$;
(ii) $\mathrm{c}=2$.
(c) Show that if the complex variables ζ and z are related via the relation

$$
z=\frac{2}{\zeta}+\zeta
$$

then the unit circle $|\zeta|=1$ in the ζ-plane maps to an ellipse in the z-plane.
If $z=x+i y$, find the equation for this ellipse in terms of x and y.
5. (a) Find the general solution of the equation

$$
\frac{d^{2} T}{d r^{2}}-\frac{2}{r} \frac{d T}{d r}=r^{2}
$$

(b) Find the general solution of the equation

$$
\left(\frac{x+y}{x-y}\right) \frac{d y}{d x}=1
$$

(c) Find the general solution of the equation

$$
\frac{d y}{d x}=\sec x \sec y .
$$

