M1M1 Mathematical Methods Summer Examination 2003

1.

- (a) Consider the fourth-order polynomial function with real coefficients given by $P(z) = z^4 + 1$.
 - (i) Find all the complex roots of P(z).
 - (ii) P(z) can be factored into two quadratic polynomials with real coefficients. Using part (i) or otherwise, find these two quadratic factors.
- (b) Find all complex solutions to the equation

$$\sinh z = 1$$
.

2.

- (a) Find the full Taylor expansion, about x = 0, of the function $\log(1+x)$. Use the ratio test to find its radius of convergence.
- (b) Let $f(x) = (1+x)^2 \log(1+x)$. Find the first 3 non-zero terms in the Taylor expansion of f(x) about x = 0.
- (c) Using the Leibniz rule, find an expression for

$$\frac{d^n f(x)}{dx^n}$$
 for $n \ge 3$.

(d) Use your answer to part (c) to check one of the coefficients obtained in part (b), explaining your check carefully.

3.

Find the solutions to the following ordinary differential equations:

(a)
$$\frac{dy}{dx} = \frac{x-y}{x-2y}; \quad y(1) = 0.$$

(b)
$$\frac{dy}{dx} = \frac{\log x}{y^2}; \quad y(1) = 0.$$

(c)
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} = e^{-x^2/2}; \quad y(0) = 0, \ y'(0) = 0.$$

4.

(a) Find the derivatives of

$$e^{\sin x}$$
, $\sin(e^x)$, $(\sin x)^x$.

(b) Consider the curve defined by

$$y^2 = x + x^3.$$

- (i) Does the curve have any stationary points? If so, find them.
- (ii) Find any points at which the tangent to the curve becomes vertical (i.e. points where the tangent has infinite gradient).
- (iii) Find any points of inflexion.
- (iv) Sketch the curve, carefully indicating any stationary point, points of infinite gradient and inflexion points on your sketch.

5.

(a) Find the following indefinite integrals:

$$\int \frac{e^x + 1}{e^x + 2} dx; \quad \int \frac{d\theta}{\sin \theta + \cos \theta}.$$

(b) Let $n \geq 0$ be an integer. Define

$$I_n = \int_0^1 [\log(x)]^n dx.$$

Compute I_{100} .