Imperial College London

BSc and MSci EXAMINATIONS (MATHEMATICS)
January 2007

M1GLA (Test)
 Geometry and Linear Algebra

- Write your name, College ID, Personal Tutor, and the question number prominently on the front of each answer book.
- Write answers to each question in a separate answer book.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- The question in Section A will be worth $1 \frac{1}{2}$ times as many marks as either question in Section B.
- Calculators may not be used.

SECTION A

1. (a) Find the perpendicular distance from the point $(2,3)$ to the line

$$
L=\{(-1,-1)+\lambda(4,5) \mid \lambda \in \mathbb{R}\} .
$$

(b) Find the point of intersection of the line L from (a) with the line through the point $(2,3)$ which is perpendicular to L.
(c) What is the focus of the parabola $y=x^{2}$?
(d) What is the directrix of the parabola $y=x^{2}$?
(e) What type of conic is represented by the equation $x_{1}^{2}-4 x_{1} x_{2}+4 x_{2}^{2}-9=0$?
(f) Find the value of a such that the following system has infinitely many solutions:

$$
\begin{aligned}
x_{1}+x_{2}-x_{3} & =1 \\
2 x_{1}+a x_{3} & =2 \\
2 x_{2}-2 x_{3} & =a
\end{aligned}
$$

(g) Find the inverse of the matrix

$$
\left(\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(h) Let $A=\left(\begin{array}{rr}-1 & 0 \\ 3 & 2\end{array}\right)$. Find an invertible 2×2-matrix P such that $P^{-1} A P$ is diagonal.
(i) Find A^{2007}, where A is as in (h).
(j) Let $A=(0,2,1), B=(1,3,1), C=(1,4,0)$ be three points in \mathbb{R}^{3}. Find a unit normal vector to the plane through A, B and C.

SECTION B

2. (a) Prove that the number of solutions of any system of linear equations is 0,1 , or infinity.
(b) For any real number a reduce the conic $x_{1}^{2}+6 \sqrt{3} x_{1} x_{2}+7 x_{2}^{2}=a$ to the standard form, and hence determine its type. You can use any method you like.
3. (a) Let A be a symmetric 3×3-matrix, and let $v_{1}, v_{2} \in \mathbb{R}^{3}$ be column vectors such that $A v_{1}=\lambda_{1} v_{1}, A v_{2}=\lambda_{2} v_{2}, \lambda_{1} \neq \lambda_{2}$. Prove that $v_{1} \cdot v_{2}=0$.
(b) Give a definition of an orthogonal matrix.
(c) Find real numbers a, b, c such that the following matrix is an orthogonal matrix with determinant 1 :

$$
\left(\begin{array}{rrr}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0 \\
-\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
a & b & c
\end{array}\right) .
$$

