Imperial College London

BSc and MSci EXAMINATIONS (MATHEMATICS) January 2006

M1GLA (Test)

Geometry and Linear Algebra

- Write your name, College ID, Personal Tutor, and the question number prominently on the front of each answer book.
- Write answers to each question in a separate answer book.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- The question in Section A will be worth $1\frac{1}{2}$ times as many marks as either question in Section B.
- Calculators may not be used.

SECTION A

It is enough just to write down your answers to each part of this question. A correct answer will score full marks, and an incorrect one will score no marks.

- 1. (i) Find, in the form $px_1 + qx_2 + r = 0$, the equation of a line in \mathbb{R}^2 having normal (-1,1) and at a perpendicular distance of $\sqrt{2}$ from the point (3,1).
 - (ii) True or false: $||x-y|| \geq ||x|| ||y||$ for all vectors $x, y \in \mathbb{R}^2$?
 - (iii) Find values of α and β such that the following system of linear equations has an infinite number of solutions:

(iv) For which values of α and β does the system in the previous part have no solutions ?

(v) Let
$$A = \begin{pmatrix} 4 & -3 \\ 6 & -5 \end{pmatrix}$$
. Find the eigenvalues of A .

- (vi) For the matrix A in part (v), find an invertible 2×2 matrix P such that $P^{-1}AP$ is diagonal.
- (vii) For the matrix A in part (v), find A^7 .
- (viii) Find positive values of r, s, t such that the matrix

$$\begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & r \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & s \\ \frac{1}{\sqrt{3}} & 0 & -t \end{pmatrix}$$

is orthogonal.

- (ix) Let A, B, C be the points (0, -1, 2), (2, -1, 1), (-2, -3, 1) in \mathbb{R}^3 . Find the area of the triangle ABC.
- (x) Find a unit vector normal to the plane containing the points A, B, C of the previous part.

SECTION B

- 2. Let α be a real number and let A be the matrix $\begin{pmatrix} 1 & \alpha \\ \alpha & 4 \end{pmatrix}$.
 - (a) Find the eigenvalues of A (in terms of α).
 - (b) Find a positive value of α such that one of the eigenvalues of A is 0.
 - (c) For the value of α found in part (b), find a 2×2 rotation matrix P such that $P^T A P$ is diagonal.
 - (d) For the value of α found in part (b), show that the conic

$$x_1^2 + 2\alpha x_1 x_2 + 4x_2^2 - \sqrt{5}(2x_1 - x_2) = 0$$

is a parabola, and make a rough sketch of it in the x_1x_2 -plane.

- 3. Let e_1, e_2, e_3 be the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) in \mathbb{R}^3 .
 - (a) Find all vectors $x \in \mathbb{R}^3$ such that

$$x + (x.e_1)e_2 = e_3.$$

(b) Find all vectors $x \in \mathbb{R}^3$ such that

$$x + (x \times e_1) = e_2.$$

(c) Suppose that x, y are vectors in \mathbb{R}^3 such that

$$x + (x \times y) = y.$$

Prove that x = y.

(You may use any standard properties of the vector product that you require.)