Imperial College London

BSc and MSci EXAMINATIONS (MATHEMATICS)
January 2006

M1GLA (Test)
 Geometry and Linear Algebra

- Write your name, College ID, Personal Tutor, and the question number prominently on the front of each answer book.
- Write answers to each question in a separate answer book.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- The question in Section A will be worth $1 \frac{1}{2}$ times as many marks as either question in Section B.
- Calculators may not be used.

SECTION A

It is enough just to write down your answers to each part of this question. A correct answer will score full marks, and an incorrect one will score no marks.

1. (i) Find, in the form $p x_{1}+q x_{2}+r=0$, the equation of a line in \mathbb{R}^{2} having normal $(-1,1)$ and at a perpendicular distance of $\sqrt{2}$ from the point $(3,1)$.
(ii) True or false: $\|x-y\| \geq\|x\|-\|y\|$ for all vectors $x, y \in \mathbb{R}^{2}$?
(iii) Find values of α and β such that the following system of linear equations has an infinite number of solutions:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& 2 x_{1}+x_{2}+\alpha x_{3}=-1 \\
& 3 x_{1}+x_{2}+x_{3}=\beta
\end{aligned}
$$

(iv) For which values of α and β does the system in the previous part have no solutions?
(v) Let $A=\left(\begin{array}{ll}4 & -3 \\ 6 & -5\end{array}\right)$. Find the eigenvalues of A.
(vi) For the matrix A in part (v), find an invertible 2×2 matrix P such that $P^{-1} A P$ is diagonal.
(vii) For the matrix A in part (v), find A^{7}.
(viii) Find positive values of r, s, t such that the matrix

$$
\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & r \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & s \\
\frac{1}{\sqrt{3}} & 0 & -t
\end{array}\right)
$$

is orthogonal.
(ix) Let A, B, C be the points $(0,-1,2),(2,-1,1),(-2,-3,1)$ in \mathbb{R}^{3}. Find the area of the triangle $A B C$.
(x) Find a unit vector normal to the plane containing the points A, B, C of the previous part.

SECTION B

2. Let α be a real number and let A be the matrix $\left(\begin{array}{ll}1 & \alpha \\ \alpha & 4\end{array}\right)$.
(a) Find the eigenvalues of A (in terms of α).
(b) Find a positive value of α such that one of the eigenvalues of A is 0 .
(c) For the value of α found in part (b), find a 2×2 rotation matrix P such that $P^{T} A P$ is diagonal.
(d) For the value of α found in part (b), show that the conic

$$
x_{1}^{2}+2 \alpha x_{1} x_{2}+4 x_{2}^{2}-\sqrt{5}\left(2 x_{1}-x_{2}\right)=0
$$

is a parabola, and make a rough sketch of it in the $x_{1} x_{2}$-plane.
3. Let e_{1}, e_{2}, e_{3} be the vectors $(1,0,0),(0,1,0),(0,0,1)$ in \mathbb{R}^{3}.
(a) Find all vectors $x \in \mathbb{R}^{3}$ such that

$$
x+\left(x . e_{1}\right) e_{2}=e_{3} .
$$

(b) Find all vectors $x \in \mathbb{R}^{3}$ such that

$$
x+\left(x \times e_{1}\right)=e_{2} .
$$

(c) Suppose that x, y are vectors in \mathbb{R}^{3} such that

$$
x+(x \times y)=y .
$$

Prove that $x=y$.
(You may use any standard properties of the vector product that you require.)

