Imperial College London

UNIVERSITY OF LONDON

Course:	M1GLA	
Setter:	Skorobogatov	
Checker:	Liebeck	
Editor:	lvanov	
External:	Cremona	
Date:	February 5, 2008	

BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2008

M1GLA

Geometry and Linear Algebra

Setter's signature	Checker's signature	Editor's signature

Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2008

This paper is also taken for the relevant examination for the Associateship.

M1GLA

Geometry and Linear Algebra

Date: examdate

Time: examtime

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. In this question you are *not* asked to prove anything. Writing your answer is enough.
 - (a) Briefly explain how, given the unit length, to construct $\frac{1}{3}\sqrt{3}$ using only ruler and compass.
 - (b) Let L be the line perpendicular to the line ax + by = c and passing through the point (a, b). Find the perpendicular distance of (0, 0) from L.
 - (c) What is the focus of the parabola $x^2 = -4y$?
 - (d) Give an example of an orthogonal 2×2 matrix without zero entries.
 - (e) Find a unit normal vector to the plane through A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) in \mathbb{R}^3 .
- 2. (a) Use Gaussian elimination to solve the system of linear equations for arbitrary $a, b, c \in \mathbb{R}$:

$$x_1 + x_2 + x_3 = a$$

$$x_1 + 2x_2 + 4x_3 = b$$

$$x_1 + 3x_2 + 7x_3 = c$$

(b) Find the inverse of the matrix

$$\left(\begin{array}{rrrr}1&a&b\\0&1&c\\0&0&1\end{array}\right)$$

for arbitrary $a, b, c \in \mathbb{R}$, using any method you like.

(c) Using any method you like find

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array}\right)^{19}$$

3. (a) Find the eigenvalues and the eigenvectors of the matrix

$$\left(\begin{array}{rrrr}1 & 1 & 1\\ 2 & 2 & 2\\ 3 & 3 & 3\end{array}\right)$$

- (b) Find a 2×2 matrix with *real* entries whose eigenvalues are 1 + i and 1 i.
- (c) Determine the type of the conic $x_1^2 + 2\lambda x_1 x_2 x_2^2 = \lambda$ for all values of $\lambda \in \mathbb{R}$. You can use any results from the lectures without proof provided you state them explicitly.
- 4. In this question you can use any results from the lectures without proof provided you state them explicitly.
 - (a) Prove that two planes in \mathbb{R}^3 with a common point have a common line.
 - (b) Prove that the vector product of (x_1, x_2, x_3) and (y_1, y_2, y_3) is perpendicular to both these vectors.
 - (c) Find a vector perpendicular to the lines L_1 and L_2 in \mathbb{R}^3 , where L_1 contains A = (1, 2, 3)and B = (4, -1, 2), and L_2 contains C = (-1, 2, 1) and D = (1, 1, 1).
 - (d) Find the area of the triangle ABC, where A, B, C are as in part (c) of this question.

M1GLA Geometry and Linear Algebra (2008)