UNIVERSITY OF LONDON

Course: M1GLA Setter: Skorobogatov Checker: Liebeck Editor: Ivanov External: Cremona Date: January 29, 2008

BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2007

M1GLA

Geometry and Linear Algebra

Setter's signature	Checker's signature	Editor's signature

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2007

This paper is also taken for the relevant examination for the Associateship.

M1GLA

Geometry and Linear Algebra

Date: examdate

Time: examtime

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. (a) Given three points on the circumference of a circle, explain how to construct the centre of the circle using only ruler and compass. (3 or 4 sentences will suffice.)
 - (b) Let $a = (a_1, a_2), b = (b_1, b_2) \in \mathbb{R}^2$. Find the equation of the perpendicular bisector of the line *ab*. (Justify your answer.)
 - (c) Let (a_1, a_2) , (a_3, a_4) , $(a_5, a_6) \in \mathbb{R}^2$ be non-collinear points whose coordinates are rational numbers, that is, for each i = 1, ..., 6 we can write $a_i = \frac{m}{n}$, where m and n are integers, and $n \neq 0$. Prove that the centre of the circle passing through (a_1, a_2) , (a_3, a_4) , (a_5, a_6) is a point with rational coordinates. (You are not asked to find these coordinates explicitly.)
 - (d) Find the equation of the circle passing though the points (1,1), (3,-1), $(0,\sqrt{3}-1)$.

- 2. (a) Define the determinant of a 3×3 -matrix.
 - (b) Find the inverse of the matrix $\begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$ using any method you like.
 - (c) For all $\lambda \in \mathbb{R}$ solve the system of equations

$$\begin{aligned} \lambda x_1 + x_2 + x_3 &= 1 \\ x_1 + \lambda x_2 + x_3 &= 1 \\ x_1 + x_2 + \lambda x_3 &= 1 \end{aligned}$$

- 3. (a) Reduce the conic $-11x_1^2 + 24x_1x_2 4x_2^2 = 20$ to the standard form by rotation, and hence determine its type. (You can use any method you like.)
 - (b) Give a definition of an ellipse in terms of its focus, directrix and eccentricity.
 - (c) Find the two foci of the ellipse $2x_1^2 + 3x_2^2 = 5$. (Proof is not required, just quote the results that you use.)

- 4. (a) Give a definition of an eigenvalue and an eigenvector.
 - (b) Prove that any symmetric 2×2 -matrix has two orthogonal eigenvectors.
 - (c) Find all 3×3 -matrices A such that AB = BA, where $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

- 5. (a) Define the vector product $a \times b$ of two vectors $a, b \in \mathbb{R}^3$.
 - (b) State and prove the theorem expressing the area of the parallelogram whose sides are vectors $a, b \in \mathbb{R}^3$ in terms of $a \times b$.
 - (c) Find an equation of the plane passing through the points (1, 1, 1), (2, 3, -1), (3, -1, -1). (You can use any method you like.)
 - (d) Find the perpendicular distance from the point (0, 0, 0) to the plane in part (c).