1. Define the length $\|x\|$ of a vector $x \in \mathbb{R}^{2}$.

Which of the following statements are true and which are false? For those which are false, give a counterexample. For those which are true give a brief proof (you may use any standard results you require without proof, provided you state them clearly).
(i) $\|x+2 y\| \leq\|x\|+2\|y\|$ for all $x, y, \in \mathbb{R}^{2}$.
(ii) $\|x+2 y\| \geq 2\|y\|-\|x\|$ for all $x, y \in \mathbb{R}^{2}$.
(iii) $\|x+2 y\| \geq\|x\|-\|y\|$ for all $x, y \in \mathbb{R}^{2}$.
(iv) If A is a 2×2 matrix whose columns are both unit vectors, then $\|A x\|=\|x\|$ for all $x \in \mathbb{R}^{2}$.
(v) If A is a 2×2 matrix whose rows are unit vectors which are perpendicular to each other, then $\|A x\|=\|x\|$ for all $x \in \mathbb{R}^{2}$.
2. Let $B=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & a & 0 \\ 1 & 1 & -a\end{array}\right)$.
(i) Find the determinant $|B|$ (in terms of a).
(ii) For which values of a is B invertible?
(iii) For which values of a and b does the system

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=0 \\
& 2 x_{1}+a x_{2}=0 \\
& x_{1}+x_{2}-a x_{3}=b
\end{aligned}
$$

have
(a) no solutions
(b) exactly one solution
(c) infinitely many solutions?

In case (c), find the general solution to the system.
3. Let $A=\left(\begin{array}{ccc}0 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & 1 & 1\end{array}\right)$.
(i) Find the eigenvalues and eigenvectors of A.
(ii) Let $v=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and $w=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$.

By expressing v and w in terms of eigenvectors of A (or otherwise), calculate the vectors

$$
A^{11} v \quad \text { and } \quad A^{11} w
$$

(iii) Hence solve for $x \in \mathbb{R}^{3}$ the system

$$
A^{11} x=\left(\begin{array}{c}
-5 \\
5 \\
2
\end{array}\right)
$$

4. (i) Let $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}$.

Write down the coordinates of the vector product $a \times b$.
Prove that $a \times b$ is perpendicular to both a and b.
(ii) Let $x \in \mathbb{R}^{3}$ and $\lambda \in \mathbb{R}$ be such that

$$
x \times(1,0,1)=(-1,2, \lambda) .
$$

Find the value of λ.
Find x, given that $\|x\|=\sqrt{3}$.
Prove that there are no solutions for x with $\|x\|=\sqrt{2}$.
5. (i) What is meant by an orthogonal matrix?
(ii) Find positive real numbers a, b, c, d such that the matrix

$$
P=\left(\begin{array}{ccc}
-a & b & d \\
0 & -c & c \\
a & b & d
\end{array}\right)
$$

is an orthogonal matrix of determinant 1 .
(iii) Let P be the orthogonal matrix in part (ii), and let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.

Show that the matrix $P^{\top} A P$ is diagonal.
(iv) Reduce the equation of the quadric surface

$$
2 x_{1} x_{2}+2 x_{2} x_{3}=1
$$

to standard form, and determine the nature of this quadric surface.

