1. Define the length ||x|| of a vector $x \in \mathbb{R}^2$.

Which of the following statements are true and which are false? For those which are false, give a counterexample. For those which are true give a brief proof (you may use any standard results you require without proof, provided you state them clearly).

- (i) $||x+2y|| \le ||x||+2||y||$ for all $x, y \in \mathbb{R}^2$.
- (ii) $||x+2y|| \ge 2||y|| ||x||$ for all $x, y \in \mathbb{R}^2$.
- (iii) $||x + 2y|| \ge ||x|| ||y||$ for all $x, y \in \mathbb{R}^2$.
- (iv) If A is a 2×2 matrix whose columns are both unit vectors, then ||Ax|| = ||x|| for all $x \in \mathbb{R}^2$.
- (v) If A is a 2×2 matrix whose rows are unit vectors which are perpendicular to each other, then ||Ax|| = ||x|| for all $x \in \mathbb{R}^2$.

2. Let
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & a & 0 \\ 1 & 1 & -a \end{pmatrix}$$
.

- (i) Find the determinant |B| (in terms of a).
- (ii) For which values of a is B invertible?
- (iii) For which values of a and b does the system

x_1	+	x_2	+	x_3	=	0
$2x_1$	+	ax_2			=	0
x_1	+	x_2	—	ax_3	=	b

have

- (a) no solutions
- (b) exactly one solution
- (c) infinitely many solutions?

In case (c), find the general solution to the system.

3. Let
$$A = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

(i) Find the eigenvalues and eigenvectors of A.

(ii) Let
$$v = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 and $w = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.

By expressing v and w in terms of eigenvectors of A (or otherwise), calculate the vectors

$$A^{11}v$$
 and $A^{11}w$.

(iii) Hence solve for $x\in \mathbb{R}^3$ the system $4^{11}x=$

$$A^{11}x = \begin{pmatrix} -5\\5\\2 \end{pmatrix}.$$

5\

- 4. (i) Let $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3) \in \mathbb{R}^3$. Write down the coordinates of the vector product $a \times b$. Prove that $a \times b$ is perpendicular to both a and b.
 - (ii) Let $x \in \mathbb{R}^3$ and $\lambda \in \mathbb{R}$ be such that

$$x \times (1, 0, 1) = (-1, 2, \lambda).$$

Find the value of λ .

Find x, given that $||x|| = \sqrt{3}$.

Prove that there are no solutions for x with $||x|| = \sqrt{2}$.

- 5. (i) What is meant by an orthogonal matrix?
 - (ii) Find positive real numbers a, b, c, d such that the matrix

$$P = \begin{pmatrix} -a & b & d \\ 0 & -c & c \\ a & b & d \end{pmatrix}$$

is an orthogonal matrix of determinant 1.

- (iii) Let P be the orthogonal matrix in part (ii), and let $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Show that the matrix $P^{\top}AP$ is diagonal.
- (iv) Reduce the equation of the quadric surface

$$2x_1x_2 + 2x_2x_3 = 1$$

to standard form, and determine the nature of this quadric surface.

M1GLA Geometry and Linear Algebra (2005)