1. For each of the following statements, either prove that it is true, or give a counterexample to show that it is false.

(i)
$$||x + y|| \le ||x|| + ||y||$$
 for all $x, y \in \mathbb{R}^2$.

(ii)
$$||x - y|| \ge ||y|| - ||x||$$
 for all $x, y \in \mathbb{R}^2$.

(iii) If $x, y \in \mathbb{R}^2$ and ||x - y|| = ||y|| - ||x||, then $y = \lambda x$ for some $\lambda \in \mathbb{R}$.

(iv) If three points in the plane with position vectors $x, y, z \in \mathbb{R}^2$ all lie on the same straight line L, then the point with position vector $\frac{1}{3}(x+y+z)$ also lies on L.

2. (a) Prove that if v is a column vector in \mathbb{R}^2 , and $v \neq 0$, then there exists an invertible 2×2 matrix A such that

$$A\left(\begin{array}{c}1\\0\end{array}\right)=v.$$

(b) Prove that if v and w are column vectors in \mathbb{R}^2 with $v, w \neq 0$, then there exists a 2×2 matrix A such that

$$Av = w.$$

(c) Let v_1, v_2, w_1, w_2 be non-zero column vectors in \mathbb{R}^2 , such that v_1 is not a scalar multiple of v_2 , and w_1 is not a scalar multiple of w_2 . Prove that there exists a 2×2 matrix A such that

$$Av_1 = w_1$$
 and $Av_2 = w_2$.

3. (a) Let A be a 3×3 matrix and b a 3×1 column vector. Prove the following statements concerning the system of linear equations Ax = b (where x is a 3×1 column vector of unknowns). You may use any standard results you require provided you state them clearly.

(i) If $det(A) \neq 0$ then the system Ax = b has exactly one solution.

(ii) If det(A) = 0 then the system Ax = b has either no solutions or infinitely many solutions.

(b) For which values of the real number α does the system

have

(i) no solutions ?

(ii) exactly one solution ?

(iii) infinitely many solutions ?

4. Let

$$A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

(i) You are given that 5 is an eigenvalue of A. Find the other eigenvalues.

(ii) Find the eigenvectors of A.

(iii) Find an orthogonal 3×3 matrix P (i.e. a matrix satisfying $P^T P = I$) such that $P^T A P$ is a diagonal matrix.

(iv) Giving your reasoning, say what kind of quadric surface in \mathbb{R}^3 is represented by the equation

$$3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3 = 0.$$

5. (a) Define the vector product $a \times b$ of two vectors $a, b \in \mathbb{R}^3$.

(b) Let A, B, C be the points (0, 1, 1), (1, 0, -1), (2, 1, 0) respectively.

(i) Find the area of the triangle ABC.

(ii) Find the volume of the parallelepiped with corners A, B, C, D, where D is (-2, 0, 2).

(iii) Find α such that the four points A, B, C and $(1, 2, \alpha)$ are coplanar (i.e. lie on the same plane).

(c) Let $a \in \mathbb{R}^3$ be a non-zero vector, and suppose that $x,y \in \mathbb{R}^3$ satisfy the equations

$$a.x = a.y$$
 and $a \times x = a \times y$.

Prove that x = y.

(You may assume the identity $(b \times c) \times d = (b.d)c - (c.d)b$ for any $b, c, d \in \mathbb{R}^3$.)