M1GLA Exam, May 2003

1. Let A, B be two distinct points in the plane with position vectors $a, b \in \mathbb{R}^{2}$, respectively.

Write down in vector form a straight line L which passes through A and B. Prove that L is the only line passing through A and B.

Prove that the equation of the perpendicular bisector of the line segment $A B$ is

$$
x .(a-b)=\frac{1}{2}\left(\|a\|^{2}-\|b\|^{2}\right) .
$$

2. In this question, A is an $m \times n$ matrix, b an $m \times 1$ column vector, and x an $n \times 1$ column vector of unknowns.
(i) Prove that the system of linear equations $A x=b$ either has no solutions, or has exactly 1 solution, or has infinitely many solutions for x.
(ii) Show that if the system $A x=b$ has exactly 1 solution, then the system $A x=0$ also has exactly 1 solution.
(iii) Show that if the system $A x=0$ has exactly 1 solution, then the number of solutions of the system $A x=b$ is either 0 or 1 .
(iv) For which values of λ does the system

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=\lambda \\
& x_{1}-x_{2}+x_{3}-x_{4}=0 \\
& x_{1}-3 x_{2}+x_{3}+\lambda x_{4}=2
\end{aligned}
$$

have no solutions?
3. Let $A=\left(\begin{array}{cc}-6 & 5 \\ -10 & 9\end{array}\right)$.
(i) Find the eigenvalues and eigenvectors of A.
(ii) Find an invertible 2×2 matrix P such that $P^{-1} A P$ is diagonal.
(iii) Find a 2×2 matrix C with complex entries such that $C^{2}=A$.
(iv) Show that if X is an arbitrary 2×2 matrix, then $\operatorname{det}\left(X^{2}\right)=(\operatorname{det} X)^{2}$.
(v) Using (iv), prove that there is no 2×2 matrix D with real entries such that $D^{2}=A$.
4. Let $S=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$, a symmetric 2×2 matrix with real entries a, b, c, where $b \neq 0$.
(i) Prove that S has two different real eigenvalues α_{1}, α_{2}.
(ii) Let v_{1}, v_{2} be eigenvectors of S corresponding to the eigenvalues α_{1}, α_{2} respectively. Prove that v_{1} is perpendicular to v_{2} (i.e. $v_{1}^{T} v_{2}=0$).
(iii) Now let $S=\left(\begin{array}{ll}5 & 2 \\ 2 & 2\end{array}\right)$. Find a 2×2 rotation matrix P such that $P^{T} S P$ is diagonal.
(iv) Giving your reasoning, say what type of conic is defined by the equation

$$
5 x_{1}^{2}+4 x_{1} x_{2}+2 x_{2}^{2}=1 .
$$

5. Define the vector product $a \times b$ of two vectors $a, b \in \mathbb{R}^{3}$.

Show that $a \times b$ is perpendicular to both a and b.
Now let A, B, C be three points, with position vectors $a, b, c \in \mathbb{R}^{3}$, and suppose A, B, C are not collinear (i.e. do not all lie on the same straight line). Find, in terms of a, b, c, a non-zero vector which is normal to the plane containing A, B, C, and show that the equation of this plane is

$$
x .((a \times b)+(b \times c)+(c \times a))=a .(b \times c) .
$$

Deduce that the point with position vector $a+b+c$ lies in this plane if and only if $a .(b \times c)=0$.

