M1GLA Exam 2002

1. Let x, y be vectors in \mathbb{R}^{2}.
(i) Define the scalar product $x . y$ and the length $\|x\|$.
(ii) Prove that

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+2 x . y
$$

(iii) Prove the Cauchy-Schwarz inequality

$$
x . y \leq\|x\|\|y\| .
$$

(You may not assume any trigonometry results, such as the cosine rule, without proof.)
(iv) Deduce the triangle inequality

$$
\|x+y\| \leq\|x\|+\|y\| .
$$

(v) Show that if $\|x+y\|=\|x\|+\|y\|$, and $x \neq 0$, then y is a scalar multiple of x.
2. Find in terms of c the eigenvalues of the matrix

$$
\left(\begin{array}{ll}
1 & c \\
c & 3
\end{array}\right)
$$

Find a positive value of c such that one of these eigenvalues is 0 .
For this value of c, consider the conic

$$
x_{1}^{2}+2 c x_{1} x_{2}+3 x_{2}^{2}=\sqrt{3} x_{1}-x_{2}
$$

Find a rotation matrix P such that the change of variables $x=P y$ reduces the equation to standard form. Show that the conic is a parabola and sketch it in the $x_{1} x_{2}$-plane.
3. Let A be an $m \times n$ matrix and b an $m \times 1$ column vector. Explain why if $m<n$, then the system of linear equations

$$
A x=b
$$

has either no solutions, or has infinitely many solutions for x, where x is an $n \times 1$ column vector of unknowns. (Just an explanation is required, no proofs necessary.)

Consider the system of linear equations

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=-1 \\
& 2 x_{1}+a x_{2}+x_{3}+x_{4}=1 \\
& 3 x_{1}+x_{2}+x_{3}+a x_{4}=b
\end{aligned}
$$

where a, b are real numbers. For which values of a and b does the system have
(i) no solutions ?
(ii) infinitely many solutions ?
4. Let A be the matrix $\left(\begin{array}{ccc}-1 & -2 & 1 \\ 0 & -3 & 1 \\ 0 & -6 & 2\end{array}\right)$.
(i) Find the eigenvalues of A.
(ii) Find an invertible 3×3 matrix P such that $P^{-1} A P$ is diagonal.
(iii) Show that $A^{n}=(-1)^{n-1} A$ for all integers $n \geq 2$.
5. Let a, b, c be vectors in \mathbb{R}^{3}.
(i) Define the vector product $a \times b$.
(ii) Show that $(a \times b) \times c=(a . c) b-(b . c) a$.
(iii) Deduce the Jacobi identity

$$
(a \times b) \times c+(b \times c) \times a+(c \times a) \times b=0 .
$$

(iv) Find a real number α such that the four points

$$
(1,0,0),(2,3,-4),(1, \alpha,-\alpha),(0,-2 \alpha, \alpha)
$$

are distinct and coplanar.

