Imperial College London

BSc and MSci EXAMINATIONS (MATHEMATICS)
January 2007

M1F (Test)

Foundations of Analysis

- Affix ONE label to each answer book that you use. DO NOT use the label with your name on it.
- Write your answers in a single answer book, using continuation books if necessary.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- The question in Section A will be worth $1 \frac{1}{2}$ times as many marks as either question in Section B.
- Calculators may not be used.

SECTION A

1. (i) Let S_{1} be the union of the irrational numbers with the integers.

Let S_{2} be the set of all real numbers which have periodic decimal expressions (recall that a periodic decimal is one that takes the form $a_{0} . a_{1} \ldots a_{k} b_{1} \ldots b_{l} b_{1} \ldots b_{l} \ldots$).
Let $S_{3}=\mathbb{R} \times \mathbb{N}$. Which of these 3 sets are countable?
(a) all of them, (b)
(b) none of them, (c) S_{1} and S_{2},
(d) S_{2} only.
(ii) Which of the the following numbers is the highest common factor of 1001 and 49:
(a) 1
(b) 49
(c) 7
(d) 9 ?
(iii) Let $r_{1}=2+\sqrt{3}, r_{2}=(64)^{1 / 3}, r_{3}=0.1010010010000 \ldots$. Which of these real numbers are irrational?
(a) all of them, (b) none of them, (c) r_{1} and r_{3} only, (d) r_{1} only.
(iv) Let P_{n} be the set of all degree n polynomials with real coefficients. Let $D: P_{17} \rightarrow P_{16}$ be the map that sends a polynomial $p(x)$ to its derivative $p^{\prime}(x)$. Which of the following is true?
(a) D is $1-1$ but not onto,
(b) D is onto but not 1-1,
(c) D is neither 1-1 nor onto,
(d) D is a bijection
(v) Consider the following three statements:
P_{1} : If x is an upper bound for A and $x \in A$, then x is a least upper bound for A.
P_{2} : If x is a least upper bound for A then $x \in A$.
P_{3} : If $A \subseteq B, x$ is a greatest lower bound for A and y is a greatest lower bound for B, then $y \leq x$.
Which of these 3 statements are true?
(a) all are true, (b) none are true, (c) P_{1} and P_{3} only, (d) P_{2} and P_{3} only.
(vi) Which one of the following cubics has roots $1+i, 1-i$, and 2?
(a) $x^{3}-4 x^{2}+6 x+4=0$
(b) $x^{3}+4 x^{2}-6 x+4=0$
(c) $4 x^{3}-6 x^{2}+4 x-1=0$
(d) $i x^{3}-4 i x^{2}+6 i x-4 i=0$.
(vii) Let $x=64^{32}, y=32^{64}$ and $z=8^{100}$. Which of the following is true?
(a) $x<y<z$
(b) $x=y$ and $y<z$
(c) $x<z<y$
(d) $y<z<x$
(viii) Let $S=\mathbb{C}$ and define an relation on S by $a \sim b$ if and only if $|a-b|<1$. Which of the following is true?
(a) \sim is symmetric and reflexive but not transitive
(b) \sim is symmetric but not reflexive or transitive
(c) \sim is an equivalence relation
(d) \sim is reflexive and transitive but not symmetric
(ix) How many complex numbers $z=x+i y$ with $x>0$ satisfy $z^{6}=321$?
(a) 6
(b) 3
(c) 2
(d) infinitely many.
(x) Let r be the unique integer with $0 \leq r \leq 10$ such that $7^{37} \equiv r \bmod 11$. Then r is equal to which of the following?
(a) 0
(b) 6
(c) 5
(d) 9 .

SECTION B

2. (a) Prove using induction that every positive integer greater than 1 is equal to a product of prime numbers.
(b) Give a careful statement of the Fundamental Theorem of Arithmetic.
(c) Find all integer solutions x, y to the equation $x^{2}=y^{3}$.
(d) Prove that \sqrt{n} is rational if and only if n is a perfect square.
3. (a) Let S be a non-empty subset of \mathbb{R}. Give the definition of a least upper bound for the set S.
(b) Prove that S cannot have 2 different least upper bounds.
(c) Prove that for any real number r, there exists a set of rationals having least upper bound equal to r.
(d) Prove that for any positive integer n,

$$
3^{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{k} .
$$

(e) Let a and b be positive integers. Define the highest common factor, $\operatorname{hcf}(a, b)$ and the lowest common multiple $\operatorname{lcm}(a, b)$. Prove without using prime factorization that

$$
\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{hcf}(a, b)}
$$

