BSc and MSci EXAMINATIONS (MATHEMATICS) January 2006

M1F (Test)

Foundations of Analysis

- Write your name, College ID, Personal Tutor, and the question number prominently on the front of each answer book.
- Write answers to each question in a separate answer book.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- The question in Section A will be worth $1\frac{1}{2}$ times as many marks as either question in Section B.
- Calculators may not be used.

SECTION A

- 1. (I) Say whether the following statements are true or false:
 - (i) If $A = \{x \in \mathbb{R} \mid x^5 \ge 0\}$ and $B = \{x \in \mathbb{R} \mid 16 x^2 > 0\}$ then $A \cap B = \{x \in \mathbb{R} \mid 0 \le x \le 4\}.$
 - (ii) Let A, B, C and D be statements about real numbers such that $A \Rightarrow B, D \Rightarrow C$ and $C \Rightarrow B$. If A is true then D must be true.
 - (iii) If $\omega = e^{\pi i/3}$ then $\omega + \omega^4 = 0$.
 - (iv) If $a, b, c \in \mathbb{N}$ and c divides a^2b^2 , then c^2 divides a^2b^2 .
 - (v) The function $f: \mathbb{N} \to \mathbb{Z}$ defined by $f(n) = 1 n^2$ is 1-to-1 (injective).
 - (vi) The following is an equivalence relation on $\mathbb C$

$$z \sim \omega \iff |z| - |\omega| \in \mathbb{Z}.$$

- (II) (i) Let E be the number of edges of a polyhedron with 6 vertices and 8 faces. Let V be the number of vertices of a cube. Which of the following is true?
 (a) E > V
 (b) E < V
 (c) E = V
 (d) can't tell
 - (ii) If $n \in \mathbb{N}$ is even then $\sqrt{2} n \cdot 41\overline{42}$ is rational (a) always (b) sometimes (c) never
 - (iii) Let $x = 2^{3/2} 5^{1/2} 4^{-1/4} \sqrt{10}$. Which of the following is true: (a) x < 10 (b) $x^3 \in \mathbb{Q}$ (c) $\frac{x}{\sqrt{5}} \in \mathbb{N}$ (d) $x^2 > 10x + 2$
 - (iv) The binomial theorem states that $(1-x)^n$ is equal to

(a)
$$\sum_{k=0}^{n} \binom{n}{k} (-x)^{k}$$
 (b) $\sum_{k=0}^{n} \binom{n}{k} x^{k}$ (c) $\sum_{k=0}^{n} \binom{n-k}{k} x^{k}$ (d) $\sum_{k=1}^{n} \binom{n}{k} x^{k}$

(v) How many complex numbers z = x + iy with x < 0 satisfy $z^6 = 16$ (a) 6 (b) 2 (c) 3 (d) 1 (e) infinitely many

(vi) Which of the following statements is true for the set

$$S = \{ x \mid x \in \mathbb{R}, \ 2x > x^2 \}$$

- (a) LUB(S) exists but GLB(S) does not.
- (b) GLB(S) exists but LUB(S) does not.
- (c) Neither LUB(S) nor GLB(S) exists.
- (d) Both LUB(S) and GLB(S) exist.
- (vii) Let A and B be finite sets with |A| = 5 and |B| = 10. How many surjective (onto) maps $B \to A$ are there

(a)
$$5^5$$
 (b) 5^{10} (c) 10^{10} (d) some other positive number (e) none

SECTION B

- 2. (a) State the principle of induction.
 - (b) Prove that for $n \geq 2$,

$$\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)\ldots\left(1-\frac{1}{n^2}\right)=\frac{n+1}{2n}$$

(c) Let u_1 , u_2 , u_3 ... be the sequence defined by

 $u_1 = 3, \ u_2 = 5$ and $u_n = 3u_{n-1} - 2u_{n-2}$ for $n \ge 3$.

Guess a simple formula for $u_n - 1$. Use (strong) induction to prove that your formula is correct.

- 3. (a) Fix $m \in \mathbb{N}$. Define what $a \equiv b \mod m$ means for $a, b \in \mathbb{Z}$.
 - (b) Prove $a \sim b \iff a \equiv b \mod m$ is an equivalence relation on \mathbb{Z} .
 - (c) Prove there do not exist positive integers n and r such that $n^2 \equiv r^2 + 2 \mod 4$. (You may assume basic properties of modular arithmetic without proof.)
 - (d) Find integers λ , μ such that $16\lambda + 334\mu = 10$.
 - (e) Use the fact that $1001 = 13 \times 77$ to work out the remainder when 4003005008 is divided by 13.