1. (a) Define what it means for a real number to be rational and for a real number to be irrational.
(b) Prove that if a is irrational and b is rational then $a+b$ is irrational.
(c) Prove that if $x=p+\sqrt{q}$, where p and q are rational, then for any $m \in \mathbb{N}, x^{m}=a+b \sqrt{q}$ for some rational numbers a and b.
(d) A real number α is said to be algebraic if there exists a polynomial P with integer coefficients $a_{0}, a_{1}, \ldots, a_{n}$ with $a_{0} \neq 0$, such that

$$
P(\alpha)=a_{n} \alpha^{n}+\ldots+a_{1} \alpha+a_{0}=0 .
$$

Prove that if $\alpha>0$ is an algebraic number then so is $\sqrt{\alpha}$.
(e) Find a quadratic equation whose roots are $5+2 \sqrt{6}$ and $5-2 \sqrt{6}$. Hence, using part (d) or otherwise, prove that $\sqrt{2}+\sqrt{3}$ and $\sqrt{2}-\sqrt{3}$ are both algebraic numbers.
2. Let $n \in \mathbb{N}$ and r be a non-negative integer less than or equal to n. Define the binomial coefficient $\binom{n}{r}$ to be the number of r-element subsets of the set $S=\{1,2, \ldots, n\}$.
(a) State the Multiplication Principle for an n-stage process. Use this principle to prove that the binomial coefficients as defined above are equal to

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} .
$$

(You may assume that the number of arrangements of a set of n elements is $n!$.)
(b) State the Binomial Theorem.
(c) By considering $(1+x)^{n} \cdot(1+x)^{m}$ prove that the binomial coefficients satisfy

$$
\sum_{k=0}^{l}\binom{n}{k}\binom{m}{l-k}=\binom{n+m}{l}
$$

(d) By considering $(1+x)^{n}$ for two different choices of x prove that

$$
\sum_{\substack{l \text { odd } \\ 0 \leq l \leq n}}\binom{n}{l}=\sum_{\substack{l \text { even } \\ 0 \leq l \leq n}}\binom{n}{l}=2^{n-1} .
$$

3. Let z be a complex number.
(a) Define the modulus, $|z|$, of z and give a geometric interpretation of it in terms of the Argand plane.
(b) Let $w, z \in \mathbb{C}$. Prove that

$$
|z+w|^{2}+|z-w|^{2}=2\left(|z|^{2}+|w|^{2}\right)
$$

Interpret this fact in terms of the geometry of parallelograms. Draw a careful figure to illustrate your statement.
(c) Find the real and imaginary parts of $(\sqrt{3}-i)^{10}$ and $(\sqrt{3}-i)^{-7}$. For which values of n is $(\sqrt{3}-i)^{n}$ real?
(d) Find all the solutions of the equation

$$
z^{5}=-\sqrt{3}+i
$$

4. (a) Define what it means for a real number x to be a greatest lower bound for a subset S of \mathbb{R}. When exactly does a subset of \mathbb{R} have a greatest lower bound?
(b) Find the greatest lower bounds and least upper bounds (if they exist) of the following sets:

$$
S=\{x \mid 0 \leq x \leq \sqrt{2} \text { and } x \in \mathbb{Q}\}, \quad T=\left\{\left.\frac{1}{n}+(-1)^{n} \right\rvert\, n \in \mathbb{N}\right\}
$$

Explain briefly your reasoning, making sure to explain why these why these bounds do or do not exist.
(c) Let S be a non-empty subset of \mathbb{R} which is bounded above and let $a \in \mathbb{R}$. Define another subset of \mathbb{R} by

$$
a+S:=\{a+S \mid x \in S\}
$$

Prove that $a+S$ has a least upper bound and that

$$
L U B(a+S)=a+L U B(S)
$$

(d) For both of the following statements, either prove that it is true or give a counterexample. If you give a counterexample, you should make sure to explain carefully why it is a counterexample.
(i) If a subset S of \mathbb{R} contains only irrational numbers, and S has a least upper bound, then $L U B(S)$ is irrational.
(ii) Every real number is the least upper bound for some set of rational numbers.
5. (a) State the principle of strong induction.
(b) Define what it means for an integer $p \geq 2$ to be prime.
(c) Prove that every positive integer $m \geq 2$ is a product of prime numbers.
(d) Define what it means for two integers a and b to be congruent modulo a positive integer m.
(e) Calculate the remainder when 7^{15} is divided by 17 .
(f) Suppose that a, b and c are integers, such that a and c are relatively prime. Prove that if c divides $a b$, then c divides b. Hence deduce that if p is prime and p divides $a b$ then either p divides a or p divides b.
(You may not assume the uniqueness of prime factorization to prove part (f)).

