Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M1F

Foundations of Analysis

Date: Tuesday, 16th May 2006

Time: 2 pm – 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. (a) Define what it means for a real number to be *rational*.
 - (b) Stating clearly any facts you use, decide which of the following numbers are rational.
 - (i) $2\sqrt{3}$

(ii)
$$\sqrt{2} + \sqrt{3/2}$$

- (iii) $2\sqrt{18} 3\sqrt{8} + \sqrt{4}$
- (c) Define what it means for a relation on a set to be *transitive*.
- (d) Decide which of the following relations on \mathbb{R} are equivalence relations. For those that are, describe the equivalence class of 0; for those that are not, explain why.
 - (i) $a \sim b \iff a^2 b^2 \in \mathbb{Z}$ (ii) $a \sim b \iff |a - b| < 1$ (iii) $a \sim b \iff a^2 - b^2 \ge 0$ (iv) $a \sim b \iff \frac{|a| + 1}{|b| + 1} \in \mathbb{Q}$
- 2. (a) Define the modulus |z| and complex conjugate \overline{z} of a complex number z.
 - (b) Sketch the sets

$$L=\{z\mid |z-i|=|z+i|\}$$
 and $M=\{p+qi\mid p,q\in\mathbb{Z}\}.$

(c) Let
$$\omega = 1 + i$$
. Write ω^7 in the form $re^{i\theta}$.

- (d) Again let $\omega = 1 + i$. For which positive integers n is $\omega^n = \overline{\omega}^n$?
- (e) Still with $\omega = 1 + i$, for each of the following integers decide (with proof) if $\omega^n + \sqrt{n} \in L \cup M$.
 - (i) n = 9
 - (ii) n = 7
 - (iii) n = 24
- 3. (a) State the principle of strong induction.
 - (b) Use simple induction to prove that $1^3 + 2^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$ for all positive integers n.
 - (c) Define what it means for an integer to be *prime*.
 - (d) Prove that every integer $n \ge 2$ is a product of primes.
 - (e) Prove that if $m \ge 6$ then there exist integers $p, q \ge 0$ such that m = 3p + 4q.
- M1F Foundations of Analysis (2006)

4. (a) Consider a k-digit number $n = a_{k-1}a_{k-2} \dots a_1a_0$. Prove that

$$n \equiv \sum_{j=0}^{k-1} (-1)^j a_j \mod 11.$$

- (b) Using the fact that $999 = 27 \times 37$, calculate the remainder obtained when one divides 9008007006005004003002001 by 37.
- (c) Let

 $A = \{1/n \mid n \in \mathbb{Z}, \quad n \equiv 1 \mod 7\} \quad \text{and} \quad B = \{1/m \mid m \in \mathbb{Z}, \quad m \equiv -1 \mod 9\}.$

Prove that $A \cap B$ is an infinite set.

(d) Calculate the least upper bound $LUB(A \cap B)$, and the greatest lower bound $GLB(A \cup B)$.

- 5. (a) Let S and T be sets. Define what it means for a map $f: S \to T$ to be *surjective*, i.e. onto.
 - (b) Let $g : T \to U$ and $h : U \to V$ be surjective maps. Decide, with proof or counterexample, whether the following statements are true.
 - (i) The composite $h \circ g : T \to V$ is surjective.
 - (ii) There exists a surjective map $V \to T$.
 - (c) Find integers λ, μ such that $22\lambda + 15\mu = 2$ with $\mu > 100$.
 - (d) Define what it means for a map between sets to be injective, and construct an injective map $\mathbb{N} \to X$ where $X = \{\mu \mid 15\mu \equiv 1 \mod 22\}$.