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1. (a) Define what it means for a real number to be irrational.

(b) Stating clearly any facts you assume, decide (with proof) which of the following

numbers are rational and which are irrational. (You may assume that
√
3 is irrational.)

(i)
√
2 +

√
3/2

(ii) 2 +
√
2 +

√
3/2

(iii) 2
√
18− 3

√
8 +
√
4

(c) Consider the following relation on the set R:

a ∼ b ⇐⇒ 2ab ∈ Q.

Stating your reasons clearly, decide if this relation is

(i) symmetric,

(ii) transitive,

(ii) reflexive.

(d) Let x be the real number whose decimal expansion is

x = 0 ∙ a1a2a3 . . .

where an = 8 if n is divisible by 3 and an = 0 otherwise. Either prove that x is

irrational, or express it as a fraction.

(e) Let I = {x ∈ Q | 0 < x < 1} and J = {x ∈ Q | 0 < x < 2}. Describe an injective
(1-to-1) function f : J → I.

2. (a) Define the modulus (absolute value) |z| of a complex number z.

(b) Write (1 + i)(
√
3 + i) in the form x+ iy and in the form reiθ.

(c) Deduce the exact value of sin(5π/12).

(d) Draw a clear sketch showing the sets of complex numbers

C1 = {z : |z| = 1} and C2 = {z : |z −
√
2| = 1}.

(e) Show that if z ∈ C1 ∩ C2 then z8 = 1.
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3. (a) Define what it means for an integer p ≥ 2 to be prime.

(b) Prove that there are infinitely many prime numbers.

[You may assume the existence of prime factorisation.]

(c) Find all pairs of positive integers x, y ∈ N such that x3 = 8y5 and y is odd.

[You may quote the fundamental theorem of arithmetic without proof.]

(d) Let A = {1
p
| p prime }, let B = {x | x ∈ R, x2 < 4}, let C = A∪B and D = A∩B.

Find the least upper bound (LUB) and greatest lower bound (GLB) for both C and

D.

4. (a) State the principle of induction.

(b) Let n ∈ N. Prove that n3 + (n+ 1)3 + (n+ 2)3 is divisible by 9.

(c) The Fibonacci sequence (Fn) is defined as follows:

F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3.

Prove that

Fn =
(1 +

√
5)n − (1−

√
5)n

2n
√
5

for all n ≥ 1.

[Hint: In the inductive step, you’ll need to note that (3±
√
5) = 1

2
(1±

√
5)2.]
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5. (a) Let m ∈ N and let a, b ∈ Z. Define what it means to say that a is congruent to b
modulo m, written a ≡ b mod m.

(b) Prove that if hcf(a,m) divides b then there exists an integer x such that ax ≡ b
mod m.

(c) Find an integer x > 100 such that 75x ≡ 6 mod 12.

(d) Calculate the remainder when 781 is divided by 15.

(e) Use the fact that 999 = 27× 37 to calculate the remainder when 6005004003002001
is divided by 37.
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