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1. (a) Define what it means for a real number to be rational.

(b) Find irrational numbers a and b such that a+ b is rational but ab is not.

(c) Prove the following statements.

(i) If a ∈ N is odd, then
√

2a is irrational.

(ii)
√

60 +
√

5/2 is irrational.

(d) Let x be the real number whose decimal expansion is

x = 2 · 114 = 2 · 114114114 . . .

Write x as a fraction.

(e) Let y be the real number whose decimal expansion is

y = 1 · a1a2a3 . . .

where an = 2 if n = 2m for some m ∈ N and an = 1 otherwise. Either prove that y

is irrational, or else express it as a fraction.
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2. (a) Define the conjugate z of a complex number z ∈ C.

(b) Prove that z + z and zz are real for all z ∈ C.

(c) Given ω ∈ C, describe a quadratic equation with real coefficients and roots ω and ω.

(d) Describe the roots of the equation x7 − 1 = 0 in both polar form and the form

z = a+ ib. Draw the roots in the complex plane.

(e) Express the polynomial x7 − 1 as the product of (x− 1) and three real quadratics.

(f) Deduce that

(2 + 2 cos
2π

7
)(2 + 2 cos

4π

7
)(2 + 2 cos

6π

7
) = 1.
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3. (a) State the principle of strong induction.

(b) Define what it means for an integer p ≥ 2 to be prime.

(c) Prove that every positive integer m ≥ 2 is a product of prime numbers.

(d) For each positive integer n, let Sn = n2 + (n+ 1)2 + · · ·+ (2n)2. Prove Sn ≥ 2n3.

(e) For each positive integer n, prove that 32n + 2n6 is divisible by 7.
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4. (a) Define what it means for two integers a and b to be congruent modulo m.

(b) Calculate the remainder when 78 is divided by 17.

(c) Prove that 740 + 716 is divisible by 17.

(d) Noting that 999 = 27 × 37, work out the remainder when 8009005003005008 is

divided by 37.

(e) Find an integer t such that 78t ≡ 91 mod 143.

(f) Find an integer x such that 2x3 + 7x2 + 4 = 0, or else prove that no such integer

exists. [Hint: Work modulo 5.]
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5. (a) Define what it means for a binary relation ∼ on a set S to be an equivalence relation.

(b) For each of the following relations ∼ and sets S, decide if ∼ is reflexive, symmetric,

and/or transitive. You do not need to give a proof when a property holds, but you

should give a counterexample when it does not.

(i) S = Z and x ∼ y if |x− y| ≤ 2.

(ii) S = N and x ∼ y if xy = 2.

(iii) S = R and x ∼ y if x− y ∈ Q.

For each ∼ that is an equivalence relation, describe the equivalence class of 1.

(c) Find integers λ and µ so that 7λ+ 5µ = 1 and λ > 10.

(d) Let ∼ be an equivalence relation on Z such that x ∼ x + 5 and x ∼ x + 7 for all

x ∈ Z. Prove that the equivalence class of 0 is Z.


