UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May 2008

This paper is also taken for the relevant examination for the Associateship.

M1A1

MECHANICS

Date: Monday, 19th May 2008 Time: 10am -12pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. (a) A particle of mass m moves along the x-axis subject to a conservative force $F=F(x)$. Define the potential, $V(x)$ and derive the equation for the conservation of energy

$$
\frac{1}{2} m \dot{x}^{2}+V(x)=E .
$$

(b) Show that in plane-polar co-ordinates, the acceleration has radial and transverse components

$$
a_{\mathrm{rad}}=\ddot{r}-r \dot{\theta}^{2} \quad \text { and } \quad a_{\mathrm{trans}}=r \ddot{\theta}+2 \dot{r} \dot{\theta}
$$

(c) Using the result of part (b), show that for motion in an isotropic central force, $\boldsymbol{F}(\boldsymbol{r})=F(r) \hat{\boldsymbol{r}}$, the equation for the orbit is

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{-1}{m h^{2} u^{2}} F\left(\frac{1}{u}\right)
$$

where $u=\frac{1}{r}$ and h is the constant angular momentum per unit mass.
(d) A rocket of mass $m(t)$ moves along a straight line under the influence of an external force F. Exhaust fuel is expelled at constant velocity u relative to the rocket. Show that the equation of motion for the rocket is

$$
m \dot{v}+u \dot{m}=F
$$

where $\dot{v} \equiv \frac{d v}{d t}$ etc.
2. (a) Consider the equation of motion of a damped, forced oscillator

$$
\ddot{x}+2 \mu \dot{x}+\omega_{0}^{2} x=F_{0} \cos \omega t
$$

where $\omega, \omega_{0}, \mu, F_{0}$ are constants. Show that the steady-state, periodic solution is given by

$$
x(t)=\frac{F_{0}}{\left[\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+(2 \mu \omega)^{2}\right]^{\frac{1}{2}}} \cos (\omega t+\Phi) .
$$

and derive an expression for the phase Φ.
(b) Derive an expression for the work done by the applied force over one period τ and show this is equal to the work done against the resistive force.
3. (a) Consider the equation of motion of a projectile subject to air resistance

$$
m \ddot{\boldsymbol{r}}=-m k \boldsymbol{v}-m g \boldsymbol{j} .
$$

If the body is projected from the origin with velocity \boldsymbol{u}, show that at later times

$$
\boldsymbol{r}(t)=\frac{-g}{k^{2}}\left(k t-1+e^{-k t}\right) \boldsymbol{j}+\frac{\boldsymbol{u}}{k}\left(1-e^{-k t}\right) .
$$

(b) The body returns to Earth at at time T making an angle β to the horizontal determined as

$$
\tan \beta=\frac{-\boldsymbol{v}(T) \cdot \boldsymbol{j}}{\boldsymbol{v}(T) \cdot \boldsymbol{i}}
$$

Show that

$$
\frac{\tan \beta}{\tan \alpha}=\frac{e^{k T}-1-k T}{e^{-k T}-1+k T}
$$

where α is the angle at take-off $(t=0)$.
4. A particle rests on the top of a smooth fixed sphere of radius a and is slightly displaced. By writing the acceleration in polar co-ordinates, derive the expressions

$$
\dot{\theta^{2}}=\frac{2 g}{a}(1-\sin \theta),
$$

and

$$
R=m g \sin \theta-m a \dot{\theta}^{2},
$$

where R is the force of reaction on the particle and θ is the angle measured with reference to the horizontal. Hence show it leaves the surface of the sphere at height $\frac{2 a}{3}$ above the centre with speed $\left(\frac{2 g a}{3}\right)^{\frac{1}{2}}$.

