1. A body of mass m moves along the x-axis subject to a potential $V(x)$. Show that the period τ of small oscillations about a stable equilibrium point x_{0}, is given by

$$
\tau=2 \pi \sqrt{\frac{m}{V^{\prime \prime}\left(x_{0}\right)}} .
$$

Consider the potential

$$
V(x)=\frac{x^{2}}{2}-\frac{x^{4}}{4} .
$$

If a body of unit mass is released from the point of stable equilibrium with velocity u, for what values of u does it
(i) oscillate
(ii) escape to infinity?

For the case $u=\frac{1}{\sqrt{2}}$ show that the position at time t, is given by

$$
x=\frac{1-e^{-\sqrt{2} t}}{1+e^{-\sqrt{2} t}}
$$

2. Consider the equation of motion for an undamped, forced oscillator

$$
\ddot{x}+\omega_{0}^{2} x=F_{0} \cos \omega t
$$

where $\omega, \omega_{0}, F_{0}$ are constants.
If the body is released from the origin with zero velocity at $t=0$, show that its position at later times is given by

$$
x=\frac{2 F_{0}}{\omega_{0}^{2}-\omega^{2}} \quad \frac{\sin \left(\omega_{0}+\omega\right) t}{2} \quad \frac{\sin \left(\omega_{0}-\omega\right) t}{2} .
$$

Derive an expression for the time dependence of the mechanical energy $E(t)$ exactly at resonance, $\omega=\omega_{0}$.
3. Consider the motion of a plane pendulum of length a. Using appropriate intrinsic co-ordinates (s, ψ), derive the expression for the conservation of energy

$$
E=\frac{1}{2} m \dot{s}^{2}+2 m g a \sin ^{2} \frac{s}{2 a}
$$

where g is the acceleration due to gravity. If the body is projected from $s=0$ with velocity $\dot{s}=\sqrt{4 g a} \quad$, show that at later times

$$
s=2 a \cos ^{-1}\left(\operatorname{sech} \sqrt{\frac{g t}{a}}\right)
$$

What type of motion does this correspond to qualitatively?
4. A body of mass m moves in a central force field $F(r)$ directed away from the origin. Given that the radial and transverse accelerations in polar co-ordinates are

$$
a_{\text {rad }}=\ddot{r}-r \dot{\theta}^{2} \quad \text { and } \quad a_{\text {trans }}=r \ddot{\theta}+2 \dot{r} \dot{\theta}
$$

show that

$$
\frac{d^{2} u}{d \theta^{2}}+u=-\frac{1}{m h^{2} u^{2}} \quad F\left(\frac{1}{u}\right)
$$

where $u=\frac{1}{r}$ and h is the angular momentum per unit mass.
A body is projected from the point $r=a, \theta=0$ with transverse velocity $v_{\text {trans }}=\left(\frac{2}{a}\right)^{\frac{1}{2}}$ and zero radial velocity ($v_{\text {rad }} \equiv \dot{r}=0$) , in a force field

$$
F(r)=\frac{-m}{r^{2}}\left(1+\frac{3 a}{2 r}\right)
$$

Show that the equation for the orbit is

$$
r=\frac{a}{2-\cos \frac{\theta}{2}}
$$

5. (a) A rocket of mass $m(t)$ moves in a straight line under the influence of an external force F. Exhaust gas is expelled at constant velocity u relative to the rocket. Show that the equation of motion for the rocket is

$$
m \dot{v}+u \dot{m}=F,
$$

where $\dot{v} \equiv \frac{d v}{d t} \quad, ~ e t c$.
(b) Next consider the same rocket but moving around a circular track of radius a. Show that the equation of motion in polar co-ordinates is

$$
(m a \ddot{\theta}+u \dot{m}) \hat{\boldsymbol{\theta}}-m a \dot{\theta}^{2} \widehat{\mathbf{r}}=\mathbf{F}
$$

where $\widehat{\mathbf{r}}$ and $\widehat{\theta}$ are the radial and transverse unit vectors and \mathbf{F} is the external force.

