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1. (a) A particle of mass m moves along the x-axis under the action of a conservative force

F = F (x). Derive the conservation of energy equation

E = 1
2
mẋ2 + V (x) ,

where V (x) is the potential.

(b) Describe what is meant by a position of stable equilibrium x0 and show that the period

τ of small oscillations about it is given by

τ = 2π

√
m

V ′′(x0)
.

(c) Sketch the potential V (x) = 1
2
x2e−x

2
,

identifying the positions of stable and unstable equilibrium.

If a particle of unit mass is projected with velocity u from the point of stable equilibrium,

determine the values of u for which the body

(i) oscillates,

(ii) escapes to x = +∞, x = −∞.

2. (a) A particle of mass m moves along the x-axis subject to a force

F (x, ẋ, t) = −kx− 2mμẋ+ F0m cosωt .

Show that the steady state solution to Newton’s equation is

x =
F0

[(ω2 − ω20)2 + (2μω)2]
1
2

cos(ωt+ Φ) ,

where ω0 =
√
k/m and Φ is the phase factor, to be determined.

(b) Determine the work, W = 2mμ
∫
ẋdx, done against the resistive force over one period

(in the steady state), and show that this is equal to work done by the applied force (over

the same time).
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3. (a) A body of mass m is projected from the origin with velocity u (at angle α to the

horizontal) subject to the force of gravity −mgj and air resistance −mkv. Show that
the position and velocity are given by

r(t) =
−g
k2
(kt− 1 + e−kt) j +

1− e−kt

k
u ,

v(t) =
−g
k
(1− e−kt) j + e−kt u .

(b) The body returns to Earth at angle β (< π
2
) to the horizontal defined by

tan β =
−vy(T )
vx(T )

,

where T is the time of flight, and vx and vy, are the x and y components to the velocity

vector at time T . Show that β satisfies

tan β

tanα
=
1− ekT + kT
1− e−kT − kT

.

4. In plane polar co-ordinates (r, θ) the velocity and acceleration are given by

v = ṙr̂+ rθ̇ θ̂ ,

a = (r̈ − rθ̇2)r̂+
1

r

d

dt
(r2θ̇) θ̂ .

(a) A bead of mass m is threaded on a smooth straight wire of length L that rotates in a

horizontal plane with constant angular velocity ω about a vertical axis through one end

(origin). From Newton’s law show that the position r and force of reaction R satisfy

r̈ − ω2r = 0 , (1)

and

R = 2mω ṙ , (2)

respectively.

(b) If the bead is projected with initial radial velocity −u from the end of the wire (r = L),
determine the closest distance the particle gets to the origin.

(c) In a frame of reference that is rotating with constant angular velocity ω Newton’s second

law reads

mr̈rot = F− 2mω∧ṙrot +mω
2r ,

when we have assumed that ω is perpendicular to r.

Using a non-inertial frame, fixed to the rotating wire show that the same equations (1)

and (2) derived in part (a) result from this non-inertial second law.
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5. (a) A body of mass m moves in a central force field F = F (r)r̂. From Newton’s equation

of motion show that the orbit satisfies

d2u

dθ2
+ u =

−1
h2u2m

F (
1

u
) ,

where u = 1/r and h is the angular momentum per unit mass.

(b) A body moves in a central force field

F (r) =
−mμ
r2
(1−

λ

r
) ,

with constants μ, λ > 0.

Show that the equation of the orbit can be written

1

r
=

μ

h2 + λμ
+ A cos

(√

1 +
λμ

h2
θ

)

.

(c) Assuming that the orbit is bounded, at what values of θ is the body closest and furthest

from the origin? Hence sketch the path of bounded orbits.
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