1. (a) A particle P_1 moves on a circular path with constant speed, so that its position vector is $\underline{r}_1 = b \cos \Omega t \ \underline{i} + b \sin \Omega t \ j$

 $(b, \Omega \text{ positive constants}).$

A second particle P_2 moves on a circular path with the same centre and the same angular velocity, but with radius a (> b) and in the <u>opposite</u> direction.

Show that the path of particle P_2 relative to P_1 is an ellipse.

(b) Two particles Q_1 and Q_2 have position vectors \underline{R}_1 and \underline{R}_2 (respectively) and the same acceleration g, where g is a constant vector.

At time t = 0: particle Q_1 is at the origin \underline{O} and has velocity \underline{U}_0 , while particle Q_2 is at position \underline{R}_0 and at rest.

Show that the minimum distance between Q_1 and Q_2 <u>over all time</u> is $|R_0 \sin \alpha|$, where α is the angle between \underline{R}_0 and \underline{U}_0 , and that the minimum is achieved at a time t > 0 only when $\frac{-\pi}{2} < \alpha < \frac{\pi}{2}$.

2. One end of a light inextensible string is attached to a mass of 3m, which rests on a rough horizontal table, the coefficient of friction between the mass and the table being μ . The string is at right angles to the edge of the table. It passes over a smooth fixed pulley A at the edge, under a smooth movable pulley B of mass 4m and over a smooth fixed pulley C, with a mass 3m attached to the other end of the string.

The portions of string are vertical between pulleys and the system is released from rest.

- (a) If the accelerations of the 3m, 3m masses are a_1 , a_2 (as shown) state why the acceleration of the movable pulley is $\frac{1}{2}(a_1 a_2)$ and write down the equations of motion for the three masses 3m, 4m, 3m in terms of the tension T in the string and the accelerations.
- (b) When the coefficient of friction $\mu = \frac{1}{4}$, show that the tension in the string T is $\frac{39}{20}$ mg, where g is the gravitational acceleration. By finding the accelerations determine whether the movable pulley i) rises or ii) falls.
- (c) For what value of the coefficient of friction would the movable pulley be unaccelerated?

3. (a) A particle of mass m moves along the x axis under the action of a conservative force F(x) for which the potential is V(x). If x_0 is a position of stable equilibrium for which $V''(x_0) > 0$, show that the period T of small oscillations about x_0 is given by

$$T = 2\pi \left[\frac{m}{V''(x_0)}\right]^{1/2}$$

- (b) If $V(x) = \frac{-Kx}{(x^2+4)}$ on $-\infty < x < +\infty$ and constant K > 0, show that there are two positions of equilibrium at $x = \pm 2$ and determine their stability. Find the period of small oscillations about the one that is stable.
- (c) If the particle is projected from the stable position of equilibrium with velocity U in the x direction, write down the equation of conservation of energy and use it to find the range of values of U for which the particle
 - (i) escapes to $-\infty$
 - (ii) escapes to $+\infty$.

4. The displacement x(t) of a particle from its equilibrium position satisfies the equation for a damped linear oscillator

$$\ddot{x} + p\dot{x} + \omega_0^2 x = 0$$

where $\omega_0 > \frac{p}{2} > 0$.

(a) Solve the equation for x(t) in the form

$$x(t) = e^{-pt/2} (A \cos \Omega t + B \sin \Omega t)$$

with A, B, Ω constant, given that the motion is started from the position x = a(> 0)at t = 0 from rest $(\dot{x}(0) = 0)$.

- (b) Show that the times t_n at which the particle passes through the equilibrium position x = 0 are given by $t_n = (n\pi + \alpha) / (w_0^2 p^2/4)^{1/2}$ and $\cos \alpha = \frac{-p}{2w_0}$, $\sin \alpha = (w_0^2 p^2/4)^{1/2} / w_0$.
- (c) Find the velocity $\dot{x}(t_n)$ at these times.
- (d) Sketch x(t) as a function of time t.

5. (a) The position \underline{r} of a point moving in a plane, is described by plane polar coordinates (r, θ) .

Show that the velocity \underline{v} and acceleration \underline{a} are given by

$$\underline{v} = \dot{r}\underline{e_1} + r\dot{\theta}\underline{e_2} \underline{a} = \left(\ddot{r} - r\dot{\theta}^2\right)\underline{e_1} + \left(2\dot{r}\dot{\theta} + r\ddot{\theta}\right)\underline{e_2}$$

where $\underline{e_1}$ and $\underline{e_2}$ are the unit vectors

$$\underline{e_1} = \cos \theta \, \underline{i} + \sin \theta \, \underline{j}$$
$$\underline{e_2} = -\sin \theta \, \underline{i} + \cos \theta \, j.$$

(b) A particle of mass m moves in a plane under the action of a central force field $F(r) = \frac{-\mu m}{r^2}$ directed away from the origin \underline{O} , with μ a positive constant. By considering the acceleration components of m in plane polars show that the energy equation takes the form

$$\frac{1}{2}m\dot{r}^2 + \left[\frac{1}{2}m\frac{h^2}{r^2} - \frac{\mu m}{r}\right] = E$$

where E is the total energy and $h=r^2\dot{\theta}={\rm constant.}$

(c) Given that the conic section $r = l/(1 + e \cos \theta)$ is a possible orbit for the mass m, find expressions for l and e in terms of E, h, m, μ .