E4.43 / AO1 / ISE4.43: page 1 of 7

Model Solutions - Synthesis of ligital Architectures 2007

a) [new computed example]

Variable	Produced	Consumed
t1	0	1
t2	0	1
t3	1	2,3
t4	1	2,3
t5	2	3
t6	3	4
t7	2	3
t8	3	4
X	4	Not Consumed (output)
у	4	Not Consumed (output)

[6]

b) [new computed example]

[5]

c) [bookwork]

Register conflict graphs in non-hierarchical CDFGs are interval graphs

- [2]
- d) [new computed example]

In the answer below, nodes are labelled by line number in the original code

[5]

- e) [new computed example]
- 2 adders
- [2]

2. [bookwork]

a)

"NP" stands for nondeterministic polynomial. NP consists of all the problems whose solution is checkable in polynomial time. [1]

NP-complete. This class consists of all problems in NP and at least as hard as any other problem in NP. [1]

NP-hard. This class consists of all problems at least as hard as an NP-complete problem. [1]

b)

This tells us that ILP is an NP-hard problem. [1]

c)

$$\forall v \in V, \sum_{t=ASAP_{v}}^{ALAP_{v}} x_{vt} = 1 \quad [4]$$

d)

$$\forall (v',v) \in E, \sum_{t=ASAP_{v'}}^{ALAP_{v'}} tx_{vt} + d_{v'} \le \sum_{t=ASAP_{v}}^{ALAP_{v}} tx_{vt}$$

[4]

e)

$$\forall r \in R, \forall t \in \{0,1,\dots,\lambda-1\}, \sum_{v \in V: T(v) = r} \sum_{t \in \{\mathit{ASAP}_v,\dots,\mathit{ALAP}_v\} \cap \{t-d_v+1,\dots,t\}} \leq a_r$$

[5]

f)

Let us label the CDFG sink node as z. Then the desired objective function is

$$\min: \sum_{t=ASAP_z}^{ALAP_z} tx_{zt}$$

[3]

```
a) [bookwork]

Latency-constrained list scheduling [2]

b) [new computed example]

t=0: {y<sub>2</sub>} (bound = 1)

t=1: {y<sub>3</sub>} (bound = 1)

t=2: {y<sub>5</sub>} (bound = 1)

t=3: {y<sub>4</sub>} (could be y<sub>6</sub> or y<sub>7</sub> instead) (bound = 1)

t=4: {y<sub>6</sub>, y<sub>7</sub>} (answer will vary depending on t=3) (bound expanded to 2 due to zero slack)

ALAP times (used to obtain above answers):

y2: 1, y3: 2, y4: 4, y5: 3, y6: 4, y7: 4

[14]

c) [new computed example]

Two adders are required
```

[4]

4.

[4] b) [new computed example]

Operation	ASAP	ALAP	Mobility		
V ₍₎	0	1	1		
v_1	0	1	1		
V_2	1	2	1		
V ₃	2	3	1		
V ₄	4	5	1 1		
V ₅	4	5			
V ₆	5	6	1		
V ₇	5	6	1		
V ₈	6	7	1		

c) [new computed example / theoretical application]

[4]

d) [new computed example / theoretical application]

Operation	ASAP	ALAP	Mobility		
v_0	0	0	0		
V ₁	0	0	0 0 0 0		
v_2	1	1			
V ₃	2	2			
v_4	4	4			
V ₅	4	5			
V ₆	5	5	0		
V ₇	6	6	0		
V ₈	7	7	0		

5.

a) [new computed example]

b) [new computed example]

16 control signals (11 enables, *1 select, *2 select, - select (two), div select) [2]

c) [new computed example]

Answer below is for MSB to LSB ordering: t1, t2, t3, t4, t5, t6, t7, t8, t9, x1, x2, *1 sel, *2 sel, - sel, div sel, and for all don't cares set to 0.

For other orderings or d/c settings, consult the table below (X=don't care).

Cycle	t1	t2	t3	t4	t5	t6	t7	t8	t9	x1	x2	*1	*2	_	÷
0	1	1	0	0	0	1	0	0	0	0	0	0	0	00	X
1	0	0	1	0	0	0	0	1	0	0	0	1	1	XX	X
2	0	0	0	1	0	0	0	0	0	0	0	X	X	01	X
3	0	0	0	0	1	0	0	0	0	0	0	X	X	XX	X
4	0	0	0	0	0	0	1	0	1	0	0	X	X	10	X
5	0	0	0	0	0	0	0	0	0	1	0	X	X	XX	0
6	0	0	0	0	0	0	0	0	0	0	1	X	X	XX	1

[6]

d) [new computed example / theoretical application]

