E4.25
C4.1
ISE4.23

IMPERIAL COLLEGE LONDON
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2004

MSc and EEE/ISE PART IV: MEng and ACGI

DESIGN OF LINEAR MULTIVARIABLE CONTROL SYSTEMS

Wednesday, 12 May 10:00 am

Time allowed: 3:00 hours

There are SIX questions on this paper.

Answer FOUR questions. CorreCted COpy

All questions carry equal marks

Any special instructions for invigilators and information for
candidates are on page 1.

Examiners responsible First Marker(s) : I.M. Jaimoukha
Second Marker(s) : D.J.N. Limebeer

@ University of London 2004






Special Information for Invigilators : None

Information for Candidates : None

Pagelof 7 Paper ISE4.23/E4.25/C4.1



1.

(a) Let
(s+1) (s+1)

(s+2)(s+4) (s-}-4)

(i) Find the McMillan form of G(s). (6]
(ii) Determine the pole and zero polynomials of G(s). (2]

(iii) Find the poles and zeros of G(s) specifying the multiplicity of
each. (2]

(b) Consider a state-variable model described by the dynamics

£ = Az + Bu
y = Cz

(i) Suppose that the pair (A, C) is observable and that there exists
@ = Q' > 0 such that

AQ+QA+C'C=0
Prove that A is stable. [5]
(if) Suppose that A is stable and that there exists P = P’ > 0 such

that
AP+ PA'+BB' =0

Prove that the pair (A4, B) is controllable. (5]
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2. (a) Define internal stability for the feedback loop shown in Figure 2, and
derive necessary and sufficient conditions (in terms of G(s) and K (s))
for which this loop is internally stable.

[4]

(b) Suppose that G(s) is stable. Derive a parametrisation of all internally
stabilising controllers for G(s).

(6]

(c) Suppose that G(s) and G~!(s) are stable transfer matrices. Using
the answer to part (b), or otherwise, design an internally stabilising
controller K (s) such that

(s) = - 7(5).

The controller K(s) should be given in terms of G(s).
[10]

r(s) y(s)
| K(s) N G(s) >

Figure 2
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3. Figure 3.1 illustrates the implementation of the control law u(t) = —Kz(t)
which minimises

Ieow) = [ IOz + ) d
0
subject to (t) = Az(t) + Bu(t), £(0) = zo. Here K = B'P and P = P

is the unique positive definite solution of AP+ PA~PBB'P+C'C = 0.
Assume that the triple (A4, B, C) is minimal.

G(s) > K »

Figure 3.1

{(a) Write the closed-loop dynamics as #(t) = A.z(t) + Br(t). Find A,
and prove that it is stable. (6]

(b) Let G(s) = (sI — A)"!B and L(s) = I + KG(s). Show that
L(jw)' L(jw) = I + G(jw)'C'CG(jw). (6]

(c) Suppose that stable perturbations A; and A, are introduced as
shown in Figure 3.2. Derive the maximal stability radius (using the
Lo-norm as a measure):

(i) for A; when Ay =0,

(ii) for A when Ay = 0. (8]
> A] A2
r
ﬁ? = G(s) > K
Figure 3.2
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4. Consider the feedback configuration shown in Figure 4. Here, G(s) repre-
sents a nominal plant model and K(s) represents a compensator. A;(s)
and Aj(s) are stable transfer matrices that represent uncertainties. The

design specification are to synthesise a compensator K (s) such that the
feedback loop is internally stable when:

(1) Ay =0and ||Az(jw)| < lwa(jw)|, Yw, and,
(ii) Az =0 and [|A;(Gw)|| < |w1(jw)l, Yw,

where

wi(s) = ().59-*——5)—2 wz(s) =10

(s +10)?
s+ 1) 51507

(s + 50)2

(a) Derive conditions, in terms of G(s), K(s),w:(s) and ws(s) that are
sufficient to achieve the design specifications. (5]

(b) Derive a generalised regulator formulation of the design problem that
captures the sufficient conditions in Part (a). [10]

(c) Assume that a compensator K (s) achieves the design specifications.
Comment on the performance properties (tracking, disturbance rejec-
tion, noise attenuation and control effort) for the resulting feedback
loop. [5]

4

Aq(s)

P K(S)

y

G(S) -

Figure 4
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5. (a) State the small gain theorem concerning the internal stability of a
loop with forward transfer matrix A and feedback transfer matrix S.
4

(b) Consider the feedback loop shown in Figure 5 where G(s) represents
a plant model and K (s) represents an internally stabilising compen-
sator. Suppose that

-1 -1 0 1 1
-1 -125 0 |06 0.8

K(s)é[g g]z 0 0 -10]0 0 |€RH.
1 0.6 0 0 0
1 0.8 0 0 0
K(s) > G(s) >
Figure 5
(i) Show that the given realisation for K (s) is balanced and evaluate
the Hankel singular values of K(s). [5]
(ii) Find a 2nd order compensator that achieves the same design
specifications as K (s). [5]

(iii) The graph below shows the singular value plot of (I+GK)~1G.
Find a first order compensator K,(s), such that the loop is stable
when K(s) is replaced by K, (s). Justify your answer. 6]

Singular Values

Singuiar Values {dB}

H S
0 10’ 10’ 10 10
Frequency (rad/sec)
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6. (a) Consider the regulator shown in Figure 6 for which it is assumed that
the triple (A, B,C) is minimal and z(0)=0.
) w

Figure 6

Let z = [ 2] 27 ]T and let H denote the transfer matrix from w
to z. A stabilizing state-feedback gain matrix F' is to be designed
such that, for given v>0, ||H||, < 7.

(i) Derive the generalized regulator system for this problem.  [6]
(ii) By using the Lyapunov function V(t) = z(t)7 X z(t), where X is
to be determined, derive sufficient conditions for the solution of
the design problem. Your conditions should be in the form of the
existence of a certain solution to an algebraic Riccati equation.
It should also include an expression for F' and an expression for

the worst-case disturbance w. Use the identity
(eR—a"'8)T(aR—a'S) = a®?RTR+a 2875 -~ RTS - STR,

for scalar a0 and matrices R and S to complete the squarfgl
(b) Consider the dynamics
i = Az + B(w +u), y=Czr+ ws
where variables have the standard interpretation and the estimator
& = A% + Bu — u,, §=Czt"

Define z, =z— %, y. =y—%9, ze = Cz. and u, = Ky, where K is a
constant matrix to be designed. Using the principle of duality and the
answer to part (a), or otherwise, find an internally stabilising K such

that the Heo—norm of the transfer matrix from we = [ w] wj ]T
to 2. is smaller than . (6]
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Do\?"

(a) (i) By performing the operations: ry := ry — 1, 71 Tg, To =
T2 —0.5(s+1)r1, ¢z := c2+0.55(s +2)e1, ¢; := 0.5¢1, ¢ := 2co,
we get the McMillan form G(s) = L(s)M(s)R(s) where

_[o05(s+1) 1
L(s) = [ 0.5(:+3) 1 }

0 (s+1)(s+2)
(s+4)
_[2 -sts+2)
R(s)‘[o "0s }

(if) The pole polynomial is given by | p(s) = (s + 2)(s + 4)2 I and the

zero polynomial is given by I 2(s)=(s+1)(s+2)|

(iii) |The poles are at —2, —4, —4 | and [the zeros are at —1,—-2 I All
poles and zeros have I multiplicity 1 I

(b) (i) Let z # 0 be an eigenvector of 4 and let A be the corresponding
eigenvalue. Multiplying the observability equation by 2’ from the
left and 2 from the right gives (A + X)2'Qz + 2'C'Cz = 0. Since
Q@ > 0 it follows that 2’Qz > 0 and since the pair (4,C) are
observable it follows that Cz # 0 by the PBH test. This proves
that A+ X < 0 and so 4 is stable.

(ii) Let 2 # 0 be an eigenvector of A and let A be the corresponding
eigenvalue. Multiplying the controllability equation by z’ from
the left and z from the right gives (A + \)z'Pz + 2’BB'z = 0.
Since A is stable (A + ) < 0 and since P > 0 and z # 0 ,
2'Pz > 0. It follows that 2’BB’z > 0 and so z'B # 0 and so the
pair (A, B) are observable by the PBH test.




2.

(a)

(b)

Inject a signal d in between G(s) and K(s) and call the input to
G(s) u. The loop is internally stable if and only if the transfer ma-

trix from f } to [ z } is stable (no poles in the closed right half

plane). Since

F=le ][]

the B)op is internally stable if and only if S~ is stable. ,

Since G(s) is stable, we proceed as follows. Note that

Lo T1=[& 7)o rvbx]

I -k _[1 -k 17'[I 017!
G I - 0 I+GK G I
I KI+GK)'1[ I o
0 (I+GK)! -G I
Since (I + GK)™! = I - GK(I + GK)~! and G is stable, the loop
is | internally stable if and only if @ := K (I + GK)~! is stable. | Re-
arranging terms shows that K is internally stabilising if and only if
LK = Q(I — GQ)™! for some stable Q.

Since K is required to be internally stabilising, K = QU -GQ)™!
for some stable @ from part (b). We search for a stable Q to satisfy
the design requirements. Now y = GK(I + GK)~!r = GQr, and
since G~1(s) is stable, we can take

Q) = =5 G7(s)

which is stable to give

1
s+ lr(s)

which satisfies the design requirement. Finally,
K(s) = Q(s)[I - G(s)Q(s)]™ = %G‘l(s) .

y(s) =

X



3.

(a) A little calculation shows that| A, = A — BB'P| Let A.z = Az with
z#0. We prove A + X < 0. Rearrange the Riccati equation as

AP+ PA.+ PBB'P+C'C=0
Multiply from the left by 2z’ and from the right by 2 to get
(A+XN)2'Pz+2'PBB'Pz+2'C'Cz=0

Then either [ A + X < 0}, in which case we are done, or else

A+X=0, B'Pz =0, Cz=0

So l/\+:\=0 = Az=Az & Cz=0 which contradicts observabilitgl of
(A, C) by the PBH test and proves the result.
(b) By direct evaluation, L(jw)'L(jw) = I + K(jwI — A)~'B
+B'(—jw +B'(—jwl - AN 'K'K (jwI-A)"'B
But K'K = —(—jwl — A")P — P(jwl — A) + C'C from the Riccati
equation. So, L(jw)'L(jw)
=TI+ K(jwl — A)"'B+ B'(—jwl — A)7'K' +
B'(—jwI-A)"Y(jwI+A")P~P(jwl—-A)+C'Cl(jwl-A)"'B
= I+ [K — B'P)(jwI — A)"'B + B'(—jwI — A")"'[K' - PB]
+B'(=jwl — A)71C'C(jwl - A) B[ = I + G(jw)'C'CG(jw) ]

(c) (i) Set Az = 0. Let ¢ be the input to and 4 the output of, A;. Then
e=—(0+KGe)=-(I+KG)™ 14§
Using the small gain theorem (since the regulator and the pertur-
bation are stable), the loop is stable if “A1 I+ KG’)‘IHOO <L
But part (b) implies that g[] + KG(jw)] > 1 which implies
” (I+KG)™! “oo <1. This shows that the loop will tolerate per-
turbations of size l [lA1]l., <1| without losing internal stability.
(ii) Set A; = 0. Let € be the input to and § the output of, A,. Then
e=-KGl+e)=-(I+KG)'KGs=LYI-L)§=(L"'-1)é

Using the small gain theorem (since the regulator and the per-
turbation are stable), the loop is stable if “A2 (LY -1 )”oo <1
But part (b) implies that

— AT P i -1 1
F[L(jw)™ = 1) 1+ 6[L(jw) 7] < 1+_;—[L(jw)] <2

This shows that the loop will tolerate perturbations A, of size
[|A2}l,, < 0.5]without losing internal stability.
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4. (a) We require K to internally stabilise the nominal model. Suppose
that A; = 0 and let the input to A; be e while the output be
6. Then ¢ = —C§ where C = (I + GK)"'GK is the complemen-
tary sensitivity which is stable. Using the small gain theorem, to
satisfy the first requirement, it is sufficient that [|A2(jw)C(jw)|| <
1,Vw. This is satisfied if | [|W2C|l,, < 1, where Wp = wyl. | An anal-
ogous procedure shows that to satisfy the second requirement, it
is sufficient that ||A;(jw)K (jw)S(jw)|] < 1,Yw where S = (I +
GK)~'. This can be satisfied if | [W1KS||., < 1, where Wi = w,I |
To satisfy both requirements, it is sufficient (but not necessary) that

I )L <

Wl

(b} The specifications can be met if the transfer matrix from r to z =
[zf 2]]7 in the diagram below has #.,—norm less than 1.

i t =

Wl(s) Wz(s) d
. J K@) Lelces) \)} .

e
I MNe

The corresponding generalised regulator formulation is to find an
internally stabilising K such that [|F;(P, K)|| < 1:

7 —1
Ps) [~
e <
K (s)
0 Wy
P= [ Pu Py | _ 0| WG |-
Py Pp T —G

(c) Sincew; and w, T are low pass Ailters, we expect | limited controller bandwidth |
(since [Ju(jw)|| < ||K (jw)S(jw)ll||Ir (jw)||, and | good noise attenuationl
beyond 10 radians/second (since ||y (jw)|| <||C(Gw)[||[v(Gw)]|-
lNothing can be said about the tracking and disturbance rejection lprop—
erties of the loop which therefore may be unacceptable.




5. (a) Suppose that both A(s) and S(s) are stable. Then the feedback loop
with forward transfer matrix A(s) and feedback transfer matrix S(s)

is stable if | [|A(s)S(s)ll,, < 1. ,
(b) (i) The realisation is balanced if
AL +3A'+BB' = A'S+ZA+C'C=0
for & = diag(0y,09,03) > 0 and where the o!s are the Hankel
singular values of K(s). A calculation gives t&:diag(l, 0.4,0). |

(ii) Sine one of the Hankel singular values is zero, the realisation for
K is nonminimal and one state can be removed without changing
the loop performance. Hence

-1 -1 Il 1

.| -1 12506 08
) =496 To0 0
1 08 l 0 0

(iii) Let K,(s) denote an rth order balanced truncation of K (s).
Then K, (s) = K(s) + A(s) where

3
Al <2 )" o 1)
i=r+1
Then replacing K (s) by K,(s) in Figure 5 is equivalent to:
A, '
K(s) G(s) —-

Let € be the input to A, and & be the output of A,. Then
e=—-(I+GK)1G§

and so the loop is stable if || A, ||, ||(I+GK)~1G|| <1. But,
|I+GK)G| <1

from the graph. It follows from (1) that r = 1 will guarantee
that ||A,]|o, < 2(0.4 + 0) = .8 and the loop will be stable. So

-111 1
Kr(s)é[l 0 oJ

1/00

is a first order internally stabilising controller for G(s).

o\




o\

6. (a) (i) The generalized regulator formulation is given by
AlB|B

B

z w Py, P: |ls| CTo
= =F = =

[y] P[”]’u v P [le Pzz] 00

I|o

o~ ollty

(ii) The requirement ||H]||,, < is equivalent to J:= ||z||§—f72||w||§ <0,
o0
with [jo]|? := / lv()%dt. Let V = 27Xz and set u = Fa.
0

Provided that X =XT>0and V < 0 along closed loop trajectory,
we can assume lim x(t)=0. Then V=3 Xz+2T Xz
o0

=27 (ATX+XA+FTBT X+ XBF) z+2T X Bu+wT BT X z.
Integrating from 0 to oo and using z(0) = z(o0) = 0,
oo
0= / [z7 (ATX + X A+ FTBT X + XBF) 2+27 X Bu+wT BT X z]dt.
0

Using the definition of J and adding the last equation,
o0

J = / {c"[ATX + XA+CTC+ FTF + FTBTX + XBFlz
0

—[VwTw - 2T XBw — wT BT Xz)}dt.
Completing the squares by using

(F+BTX)T(F+BTX) = FTF+ FTBTX + X BF+ X BBTX
l(vw=-y"'BTXz)|? = 72wTw-—wTBTX.'z:—zTXBw+"y‘2:z:TXBBTXx,

o0
J = / {T[ATX + XA+ CTC - (1 -y ) XBB X]z
0

+[|(F + BTX)a:”2 = |lrw - 'y‘lBTX:cHZ}dt.
So 2 sufficient conditions for J <0 are the existence of X s.t.

ATX+XA+CTC-(1-7)XBBTX=0,| [X=XT>0.]

The state feedback gain is ‘F: -BTX l and the worst case dis-

turbance is h}* =~4"2BT Xz.| The closed-loop with these feed-
back laws is & = [A~ (1-4"2)BBT X]z and a third condition




is therefore | Re A\;[A—(1—-v~?)BBTX]<0, V i.| It remains to
prove V < 0 along state-trajectory with u=Fz and w=0. But

1%

o7 (ATX + XA+ FTBTX + XBF) z
[-2T(CTC + (1 + v ?)XBBTX)s < 0]

for all z # 0 (since (4,B,C) is minimal) proving closed-loop
stability.

(b) The dynamics of the state estimation error system are given by
Te = Az + Bwy + u,, 2. = Cz., Ye = Cze + wo
which has the generalised regulator formulation
AlB 0] A:‘ cT|cT
[C 000J=>QT-1- A E
cilo 10 T 0T o

Q=

Noting that lQT has the same structure as the generlised regulator?]
of part (a), we can obtain the solution for the Ho, estimator from that
of the solution of part (a) using the duality principle by substituting

lﬁ =AT, B:=CT, C:= BT and substituting K = FT.I




