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LINEAR OPTIMAL CONTROL

Consider the system

00 00 0 1
. (00 10 00 u)
X=Ax+Bu= 00 0 1 x+ 0 0 {uz]'
0010 10
a) Show that the system is controllable. [ 4 marks ]
b) Assume u>=0. Show that the system with input #; is not controllable and not
stabilizable. [ 4 marks ]
c) Determine a state feedback control law

sy Kii K Kis Km]
Ky K»n Ky Ky

with K7, = K>3 = K»4 = 0 such that the closed-loop system has all eigenvalues
equal to —1. Show that there are infinitely many selections of the gains K,
K12, K13, K14, K51 which achieve this objective. [ 8 marks ]

d) Consider the feedback law
Uy =vi u2=[0 1 0 O]x.

Show that the system with input v; is controllable. [ 4 marks ]

Consider the system

X =Ax, y=~Cx,
with
0 1
A=[0 o |r C=[1 0]
a) Show that the system is observable for any real «. [ 2 marks ]
b) Design an asymptotic observer for the system. Select the output injection gain
L such that the matrix A — LC has two eigenvalues equal to -3. [ 4 marks ]
c) Suppose that one can measure y(¢) and a delayed copy of y(t) given by y(t — 1),
with 7 > 0. Assume (for simplicity) that o # 0.
1) For t > 1, express the vector
¥(1) J
Y{t) =
0=,
from x(0). [ 6 marks ]
ii) Show that the relation determined in part c)i) can be used, for any
7 > 0, to compute x(0) as a function of ¥ (¢), where t > 7. [ 4 marks ]
iii) Argue that the relation determined in part ¢)i) can be used to determine
x(t) from Y (t), for ¢ > 7, exactly. [ 4 marks ]
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3. Consider the system

a)

b)

c)

d)

JO+B6 =Ju.
Let x = (x;,x2)" with x; = 8 and x, = 6. Write the equations of the system in
the standard state space form

X =Ax-+ Bu.

[ 2 marks ]

The goal of the control is to drive the state x; to a reference value X; and x> to
zero, while minimizing the cost

7= [(((e) - a4 né(e)ar.

Show that this tracking problem can be transformed into a standard LQR prob-
lem. Write explicitly this LQR problem. [ 6 marks ]

Write the algebraic Riccati equation associated with the LQR problem in part
b). [ 2 marks ]

For B = 1 and J = 1, find the positive definite solution of the algebraic Riccati
equation determined in part c). [ 8 marks ]

Let B =1 and J = 1. Write the optimal control law, and the optimal closed-loop
system, for the problem in part b). Show that the optimal closed-loop system is
stable for any r > 0. [ 2 marks ]

4. Consider a cart of unity mass moving along a straight line without friction. Suppose
that at t = 0 its position is s(0) and its velocity is $(0). In the time interval [0, 7], with
T known, we want to apply a force u to minimize the cost

J =cs?(T)+ /GT u*(1)dt,

with ¢ > 0.

a)

b)

c)

Let x = (x1,x3) with x; = s and x; = § and determine matrices Q, R, M, A and
B such that

J= AT [x(t) Qx(7) + Ruz(r)]d‘c +x(T) Mx(T)
and
X=Ax+Bu.
[ 2 marks ]

Write the Hamiltonian matrix A and the differential Riccati equation associated
with the considered optimal control problem. [ 4 marks ]

The solution of the differential Riccati equation associated with the problem
can be computed by integrating the system

7= 5]

with appropriate final conditions X (7') and Y (7).
i) Choose X(T) and Y (7). [ 2 marks ]
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ii) Determine X (¢) and Y (¢). (Hint: use the fact that H* = 0.) [ 6 marks ]

iii) Determine the solution P(t) of the differential Riccati equation.
[ 4 marks ]
d) Determine the optimal control law. [ 2 marks ]
5 Consider the problem of determining the optimal investment plan for a production unit.

Denoting the rate of investment by u, the production level is described by

X=—0x+u

with & > 0 and x(0) > 0, and the index to maximize is

J=Bx(T)+ [OT(x(z‘) —u(z))dz

with B > 0 and T > 0 known.

Suppose 0 < u < i

a)
b)
c)
d)

Write the necessary conditions of optimality for normal extremals. [ 4 marks ]
Write the optimal control as a function of the optimal costate. [ 2 marks ]
Integrate the differential equations of the costate with A*(7) = —fB. [ 2 marks ]

Determine the optimal control as a function of z.

i) Show that if o and 8 are such that
Di)=¢*" D(1/a-B)—1/a+1#£0 (5.1)

for all £ € [0, T] then the optimal control law is constant. [ 4 marks ]

ii) Show that D(¢) in equation (5.1) can change sign only once. If D(z)
changes sign at ¢ = f; the optimal control has a jump at 7,. Compute 7,
as a function of & and 8. Show that if D(¢) changes sign and 8 > 1
then the optimal control is

0 forte[0,4)
a fort € [t,T|

[ 8 marks ]
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6. Consider the system

X = X2

and the cost to minimize

T
J=-x1(T)+ l] u*(t)dT.
2Jo

The cost represents a tradeoff between the maximization of x;(7) and the minimization
of the control effort.

a)

b)

c)

d)
e)

f)

Write the necessary conditions of optimality for normal extremals. (Hint: use

the condition %% = 0 for minimizing H with respect to u.) [ 4 marks ]
Write the optimal control as a function of the optimal costate. [ 2 marks ]
Integrate the differential equations of the costate. Note that the optimal costate
should be such that A} (7)) = —1 and A;(T) = 0. [ 4 marks ]
Determine the optimal control as a function of 7. [ 2 marks ]

Integrate the optimal state equations with initial conditions x7(0) = 0 and x5(0) =
0. Determine x7(T). [ 4 marks ]

Compute the optimal cost J* corresponding to the initial conditions x3}(0) = 0
and x3(0) = 0. [ 4 marks ]
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Linear Optimal Control - Model answers 2006

Question 1

a) Counsider the following submatrix of the controllability matrix

0000
0 010
1 000
0010

C=[B,AB,A’B] =

[l = R e R v
o O O =

and note that the first, second, third and fifth columns are linearly independent. Hence
the system is controllable.

b) If us = 0 we have

0000 0
; 0010 0
&= Ax+ bu; = 000 1 T+ 0 Uy .
0010 1
The controllability pencil is

s 0 0 010
0 s -1 0|0
sI-All=1 4 ¢ ¢ _1]0
00 -1 s |1

and this loses rank for s = (. Hence the system is neither controllable nor stabilizable.

c) Let

Kn Ky Kz Ko Ko | 0 0 0

0 0 1 0 0 0 1 0

Aa=AtBE=| 4 0 1|~ o] o0 0 1
K1 K2 Kiz+1 K Ky | K12 Kis+1 K

We have partitioned the last matrix to show that Ks; is an eigenvalue of Ay and the
eigenvalues of the right lower 3 x 3 block are also eigenvalues of A,. Hence, setting
Koy =1, K19 = -1, K13 = —4, Kj4 = —3 yields

-1]0 0 0
00 1 o0
Aa 0l0 0 1

which has all eigenvalues equal to —1 for any Ki;.
d) Setting u; = vy and us = [0 1 0 O]z, we obtain
0

T+ vy.

oo i e T o W
o C o =
- O
o= o
O O O



The controllability matrix of this system is

C:

o oo
o= o o
O e O
[ TS s N Y

This is full rank, hence the system is controllable.



Question 2

a)

The observability matrix is

o-13 %],

which does not depend upon « and has rank two. Ience the system is observable for
all a.

An asymptotic observer is described by
£=At+Lly—CE=(4-LOE +Ly

for some L, where £ is the asymptotic estimate of x provided the matrix A — LC has
all eigenvalues with negative real part. Note that

A== [ _iz 1{}}
and its characteristic polynomial is
2+ s(a+ L1) +ali + L.
This should be equal to (s + 3)? = s? + 65 + 9, yielding

Li=-a+6 L2=9--(6—Q)O€.
Note that
y(t) = Cet'z(0)
and replacing ¢t with t — 7 one has
y(t — 1) = Cett7z(0)
Then, for t > 7,

v0=[, 80, ][ o |0

For the given A and C' (using a # 0) we have

¢c 1 _[1 o
CE_AT 11 e -1

4]

which is invertible for all & # 0 and all 7 > 0. Hence

z(t) = eMz(0) = [ i _eu?f_l ]H Y (t).

The above relation implies that, for all £ > 7 it is possible to obtain exactly z(t).



Question 3

a) The equations of the system in standard state-space form are

0
1

0 1

0 —-B/J o

:J'czAa:—J—Bu:[ U,

b) The reference signal to be tracked is w = [Z; 0]'. Note that
Aw =0,

hence the optimal tracking problem can be transformed into a standard LQR problem.
To this end, set £ = x — w and note that the optimal tracking problem can be written
as

mamjom(ﬁf(r) + ru?(7))dr

with )
£ = At Bu,

i.e. as a standard LQR regulator problem.

¢) Set

P P
P=
l: Pis Py }

The ARE associated with the problem is

1 e Pl B Pia3  PiaPa
— ! - 2 ! S r -_— ——T
0=AP+PA+Q T‘PBB P 5 P13  PiaPao 26Pss P222

11 — T _T 2P5 — _J - _?.

d) From the (1,1) block we have Pjs = +4/r. Then, from the (2,2) block and keeping in
mind that Pss should be positive one has (one has to select Pia = /7)

Pog=—1r+ \f?”g + 2?‘%).

Then, from the (1,2) block one has (recall Pj; > 0)

P = \H"—I—Z\/F.

VT 2T VT
VT —7r -+ \/M—T\/F)

is the positive definite solution of the ARE.

Hence the matrix

P:

¢) The optimal control law is u = —K¢, with

= | L M2
K [ Lo o }



The optimal closed loop system is

_ 0 1
T = T+2+/T T
-1/ — W‘f
The characteristic polynomial of the optimal closed-loop system is

5 ATH2yT

L +S—\/_T—'+1/\/F,

hence the optimal closed loop system is stable for any r > 0.



Question 4

a)

b)

The matrices are

0 0 ¢
S

The Hamiltonian matrix is

01‘00
0 0] 0 —1
H‘oooo

0 0[-1 0

The DRE is

—P=AP+PA+Q-PBR'BP

The matrices are

X(T)=1, Y(T)

To determine X (t) and Y () note that

[ X(2) ] _ (D) [ X(T) J
Y(t) Y(T)

and that
BT = 1 L H(t — T) + H?

(t-T)
2

M.

H(t-T)

2 ]
+ H3

[

(t-T)°

3!

1 t-T Hlé(mwT%i* —5(-t+T)?
|0 1 s(-t+T) T-t

0 0 1 0

0 0 T—t 1

As a result

1+ 2c(t-T)¥ t-T

X(t) = { %c?t—T)Q 1 ] Y = { —cf :

Finally
P@t)=Y()X ()

with

1
~ det(X (1) [ —(

1

b T

det(X (8)) = 1 + (T — 1)°.

3

The optimal control law is

u=—-K(@#t)z=-R B P@t)z

with

—(-T)
(t - T)2

K(t)nm[(i”—t) (T-1)?].

|

0

t—T)2% 0

} |



Question 5

a) Note that the cost function should be changed to —J to have a minimization problem.
Let
H=—z+u+ M—ax+u).

The necessary conditions of optimality for normal extremals are

T=—azx+u A=1+al,
1+ Nu<(1+ANw Ywe|0,a].
b) The optimal control as a function of the costate is
0if 1+ A%(¢) >0
ylh) =
wif 1+ X*(¢) <0
If 14+ AX*(t) = 0 we do not have information on the optimal control.
¢) The optimal costate is
1
M) = et _ gy 1
83 &
d) The optimal control is (recall equation (5.1))
0if D(t) >0
w'(t) =
@if D(t) <0

If D(t) = 0 we do not have information on the optimal control.
If D(t) does not change sign then the optimal control is constant.
D(t) changes sign if

RI=

aft-T) _ 1
ﬁ —_

This equation may have at most one solution

e

= L

1 SR
ts=T+ =1 =
5 +Qogl’(3_l

x

If D(t) changes sign and 8 > 1 then D(T) = 1 — 3 < 0, hence the optimal control is
such that u*(7T) = 4. As a result the optimal control is equal to zero for ¢ € [0,%;) and
equal to % otherwise.



Question 6

a) Let

2

H = + Moz + dgu
The necessary conditions of optimality for normal extremals are
T = T2 To=1u
AM=0  Jo=-X

%%=u+/\2=0.

b) The optimal control as a function of the optimal costate is

Wt (1) = —N(t).

¢) From the differential equations of the costate we obtain

N)=-1 M@ =(-T)

d) The optimal control as a function of time is

u*(t) = —(t — 7).

e) From the differential equations of the state with the optimal control we obtain

s %ﬁ - % 258 = Tt — g
Hence z3(T) = TTS
f) The optimal cost is
. T3
T



