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bpecial instructions for invigilators: None

Information for candidates:

Hamilton Jacobi equation:

#(t) = f(t,z,u), 2(0) = xq

T
J{zg,u) = / Lt,z,u)dt + m{z(T)),

ov = min [L(t,m,u) + v

) ot ox fltz,u)), V(z, T) = m(z)

Linear Quadratic Regulator:

#(t) = Az(t) + Bu(t), z(0) = o

T
T(zo, u / + u(t) Ru(t)] dt + o(T) M(T)
Q= Q’zo,TR R’>O M:M’ZO

~P=AP+PA+Q-PBR'B'P,P(T)=M

u(t) = ~R71B'Px(t) = —Kz(t).
The matrices A, B, @, R, P and K may depend upon t.

Minimum principle:

= flz,u),ueld

J(xo,u / Lz Ydt,

H(z,u, Ao, A) = ML(z,u) + X f(z,u),

. OH |
M=

(z*,u*,/\a./\*).‘
H(:L‘*,w,)\a,k*) > H(SL‘*,U*,/\B,/\*), Yw € U,
H(z*, u*, \), A") = k.
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[4.22]

1. Consider the system
T =zau

with initial state xq > 0 and with the cost to be minimised
T
T(zo,u) = / L(z,u)dt
Jr

where

L(z,u) = (log |z|)* + u?.

(a) Write the Hamilton-Jacobi equation associated with this optimal control prob-
lem and the corresponding boundary condition. [4]

(b) Solve the Hamilton-Jacobi equation derived in part (a). (Hint: you may con-
sider a separable solution: V(z,t) = a(t)W(z), with W(z) = (log |z|)?. Also,

recall that | T—vl—zvzda: = arctanh(z).) 8]
(¢) Compute the optimal control and the optimal closed-loop system. 4]

(d) Suppose (T — 7) — +o0o. Compute the steady state solution of the Hamilton-
Jacobi equation, the corresponding steady state optimal control and optimal
closed-loop system. Show that the this closed-loop system has (for z > 0) the
unique equilibrium z = 1, and discuss the stability of this equilibrium. (Hint:
study the signum of # as a function of z.) [4]
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[4.22)

2. Consider the system
T=1u

with initial state zo and with the quadratic cost to be minimised
T )
J (w0, u) = / L{z, w)dt + Mz*(T)
JT
where
L(z,u) = v’
and M > 0.

{(a) Write the differential Riccati equation associated with the considered optimal
control problem and the corresponding boundary condition. [4]

(b) Solve the differential Riccati equation derived in part (a). Verify that the
solution is positive for all 7' > ¢. [6]

(¢} Compute the optimal control and the optimal closed-loop system. [2]

(d) Suppose that (T'— 7) — +o00, M = 0 and compute the steady state solution
of the differential Riccati equation. Show that this is equal to the solution of
the algebraic Riccati equation. Compute the steady state optimal control law
and the corresponding closed-loop system. Discuss the stability property of
this closed-loop system and explain why the steady state optimal control law
is not stabilizing. 18]
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[4.22]

3. Consider the system

. ) N 01 T 0
T=Ar+ Bu = {0 O][l‘g} + Iil}u

with initial state g, with the quadratic cost to be minimised

oG
Tanw = [ lanad(e) + (o)t
with ¢, > 0.

(a) Verify that, for any ¢i1 > 0, the conditions for the existence and uniqueness
of an optimal feedback control law are met. [2]

{b} Write the Hamiltonian matrix H associated with this optimal control problem.
Show that the characteristic polynomial of H is p(s) = s* + g1 and compute
the eigenvalues of H as a function of ¢;. {7]

(¢c) Let w = —Kxz = —kiz1 — kozo. Find ky and ko such that the eigenvalues
of the resulting closed loop-system coincide with the eigenvalues of H having
negative real part. (4]

(d) Explain why the state feedback control law constructed in part (c) solves the
above optimal control problem. [4]

(e} Use the result in part (d) to compute the optimal cost associated with the
initial state z(0) = [0, z20)". (3]
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4. Counsider the system

01 1 1
t=Axr +DBu = -1 0 2 tx+| 0§ u
0 0 -1 0

Consider a reference signal w(t) = [wy (t), wa(¢), w3(¢)]’ and consider the problem of
designing a linear time-invariant error feedback control law such that the state of
the closed-loop system asymptotically tracks the signal w.

(a) Characterize the class of reference signals for which the above asymptotic
tracking problem is solvable, and show that w(t) = [sint,cost, 0] belongs to
this class. [4]

(b) Suppose w(t) is such that the asymptotic tracking problem is solvable. Design
a control law v = —Kx + Kw which solves the asymptotic tracking problem
and which is such that the eigenvalues of the closed-loop matrix (A — BK) are
all equal to —1. Note that there are infinitely many matrices K assigning the
eigenvalues of the closed-loop system as required and discuss why this is the
case. [12]

(¢) Suppose w(t) does not belong to the class of signals introduced in part (a).
Explain how the tracking problem can be reformulated as a disturbance at-
tenuation problem. (4]
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5. A linear system is described by the equations

T, = xTo+u
9 = w1 tu
Yy = I — X

where v € IR is the control input, y is the output variable and « is a constant
parameter.

(a) Study the controllability and stabilizability properties of the system as a func-
tion of «. 4]

(b) Study the observability and detectability properties of the system as a function
of . 4]

(c) Assume v # 1. Design an output feedback controller applying the separation
principle. In particular, select the state feedback gain K such that the matrix
(A - BK) has two eigenvalues equal to —1 and the output injection gain L
such that the matrix (A — LC) has two eigenvalues equal to —3. Note that K

and L may depend on a. 18]
(d) Compute
lim || K| lim [|L]
and explain your results using the solutions of parts (a) and (b). 4]
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4.2

6. Consider the system

with
[0.0.

(a)
(b)

(c)

(d)

ry = XI9
a2 = I3
Ty = U
u € [-1,1], initial state z(0) = [z10,220, ", 2Zno), final state z(T) =
-+, 0], and the cost (to be minimized)
T
J(zg,u) = / 1 dt.
Jo
Write the necessary conditions of optimality for normal extremals. [4]
Compute the optimal control as a function of the costate A = [Aq, Ag, -, A/’
and show that |u*(t)| = 1 for all ¢ such that A} (t) # 0. [4]
Usc the differential cquations of the costate to show that the optimal control

law has at most n — 1 switches. (Hint: show that the equation A% () = 0 has
at most n — 1 solutions.) [6]

Assume n = 2, i.e. consider the system &1 = zo, @2 = u. Integrate the
state equation with uw = 1. Determine the set of initial conditions for which
the control u(t) = 1 for all t € [0,7] is optimal. For such initial conditions
compute the time to reach the origin. [6]
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Linear Optimal Control - Model answers 2004

Question 1

(a) The Hamilton-Jacobi equation is

ov ov
= min (log |z])* + u? + B 7Y -
Performing the minimization yields the optimal control (as a function of x and %),
namely
o = 1 (9Vz
20z

and the Hamilton-Jacobi equation
ov o 170V \?
5 = (log|z])” - 7 (8—3630) :
with boundary condition V(z,T) = 0.
(b) Let V(z,t) = a(t)(log |z|)? and note that

ov _ ov _
ot dr

Hence, the Hamilton Jacobi equation becomes

—a(t)(logle])? = (1 - a®(t))(log |z])*.

&(t)(log |z)? ot)2(log z]) .

To obtain a solution of the above equation we simply need to integrate the ordinary
differential equation —c&(t) = 1 — a?(¢) with boundary condition a(T) = 0. Integrating
the differential equation by separation of variables, and taking into account the boudary

condition we obtain
arctanh(a(t))= -t -T)=T -1t

hence
a(t) = tanh(T — t).
{¢) The optimal control is

. 1oV
W= o= tanh(T" — t)(log |z|)

and the optimal closed-loop system is

= — tanh(T — t)(log |z|)z.

(d) For T~t — oo one has a(t) — 1, hence the steady state solution of the Hamilton Jacobi
equation is V(z) = (log|z|)? and the resulting closed-loop system is & = —(log|z|)z.
This system, for > 0, has the equilibrium z = 1, and this is asymptotically stable, in
fact # < 0 for z > 1 and £ > 0 for z € (0, 1).

Alternatively, one may define a new variable z = log |z| and note that the problem becomes
a linear quadratic problem.



Question 2

(a)

(b)

{d)

Note that A =0, B =1, R =1 and @ = 0. Hence, the differential Riccati equation is
_pP=_p?
with boundary condition P(T) = M.

Solving the differential Riccati equation by separation of variables, taking into account
the boundary condition, yields

—=T—t+1/M

1
P(t)

hence

which is positive for all T > ¢.

The optimal control is

and the optimal closed-loop system is

M

R CEDES N

(t)-

For T' — 7 — oo and M = 0 we have P — 0. Note that for this problem the algebraic
Riccati equation is 0 = — P2, with solution P = 0, and this coincides with the limit
solution of the differential Riccati equation. The steady state optimal control is u* = 0
and the optimal closed-loop system is £ = 0. This is not asymptotically stable. This is
due to the fact that the linear quadratic regulator problem described by min,, [5° u?dt
with ¢ = u, does not satisfy all the standard assumptions for the solvability of the
problem, namely the matrix @ is zero, and hence the pair (A, Q'/2) is not observable
neither detectable.



Question 3

(a)

(b)

(c)

The pair {4, B} is controllable, R = 1 > 0, Q = diag(g11,0) > 0, and the pair {4, Q/?}
is observable.

The Hamiltonian matrix is
0 1’ 0 0
0 60| 0 -1
H =
—q1 070 O
0 0/ -1 0

To obtain the characteristic polynomial p(s) of H compute the determinant of s/ — H
using the ’expansion by minors method’ starting from the first row. This yields p(s) =
s(s%) 4+ 1(g11). The eigenvalues of H are the roots of p(s), namely

(qu1 )l/4< fil%)-

Note that

0 1
voea[ 01

and that the characteristic polynomial of this matrix is s + kos + k1. This should be
equal to

<s - (Q11)1/4(—£ +1 [—— ) ( — (qu)V4(- \/— £)) =% +V2(qu) Vs + V.

ki =/qy, ko = V2(qi1)*.

From the general theory of the linear quadratic regulator we know that the eigenvalues of
the optimal closed-loop system coincide with the stable eigenvalues of the Hamiltonian
matrix of the problem. However, because the system considered has only one input (and
it is controllable), given any two complex numbers A; and )g there is only one K such
that A(A — BK) = {M1, A2}. Therefore, the K obtained assigning to the closed-loop
system the stable eigenvalues of the Hamiltonian matrix is the optimal K.

The optimal cost is z(0)' Pz(0), and for x(0) = [0,z it is 3, Pa. However, the
optimal feedback gain is K = R™'B'P = [Py, Pyy]. Therefore Py = \/ﬁ(qu)l/ 4 and
the optimal cost for the initial state [0 z20)" is v/2(q11) 1/ 4z20



Question 4

(a)

(b)

To achieve asymptotic tracking with the stated class of feedback, it is necessary that
@w - Aw = 0. In particular this is the case for the given signal. In fact, if w(t) =
[sint,cost, 0] then w(t) = [cost, —sint, 0] and

cost 01 1 sint
—sgint | — 1 -1 0 2 cost | =0.
0 0 0 -1 _ 0

Let e = x — w and note that
é¢=1%—1w= Az + Bu— Aw = Ae + Bu.

Let now
u=-Ke=-K(z-w)=-Kz+Kuw

and select K = [ky, ko, k3] such that the eigenvalues of A — BK are all equal to —1.

Note that
—k1 1-—ky 1—kKs3
A-BK = -1 0 2,
0 0 -1

the characteristic polynomial of A — BK is
pls) = (s+1)(s* + k1s +1—ka)

and this should be equal to (s + 1)%. This is achieved by selecting k1 = 2 and k2 = 0,
while ks can be arbitrarily assigned. This is due to the fact that the pair (4, B) is not
controllable, however it is stabilizable and the uncontrollable mode is s = —1. This can

be seen considering the controllability pencil

s -1 -1]1
[si-A|B|=|1 s -2/0
0 0 s+1]0

and noting that it has rank 2 for s = —1 and rank 3 for any other s.

) Ifw % Aw then we can still consider the error variable e = z—w and define a disturbance

d = Aw — w. As a result
¢=Ae+ Bu+d

and the tracking problem, i.e. the problem of rendering e small can be regarding as a
disturbance attenuation problem, i.e. the problem of finding u = —Ke such that the
effect of d on e is small.



Question 5

(a)

(b)

(c)

(d)

The controllability matrix is
11

and the system is controllable if a # 1. If @ = 1 the controllability pencil is

s =111
ERIE
and this has rank 1 for s = —1 and rank 2 for any other s. Therefore, the system is
stabilizable and s = —1 is the non-controllable mode.

The observability matrix is

and the system is observable if a # 1. If o = 1 the observability pencil is

{51-,4} s —1
'-——'C—‘— = ’1 8
1 -1

and this has rank 1 for s = 1 and rank 2 for any other s. Therefore the system is not
detectable.

Let K = [k k2] and note that
I R )
A-BK—{O[_]C1 ke },

and that the characteristic polynomial of this matrix is s2 + (k1 4 k2)s + (k1 + ake — «).
Hence the selection
k=1 ko =1

is such that the eigenvalues of A — BK are equal to ~1. Let L = [l I5)7 and note that

- 1+

A—LC:[Q[_Z2 Iy

and that the characteristic polynomial of this matrix is s? + (1 — l2)s + (l2 — a1 — a).

Hence the selection
_ 15+«

94+ 7a
ll—— -

Iy =
1—a 2 l—«o

is such that the eigenvalues of A — LC are equal to —3. Finally, the controller is
£=(A- BK - LC)Y + Ly, u= —K&.

The limit for @ — 1 of |K|| = /k2 + k% is v/2, whereas the limit for o — 1 of [|L]
is equal to +oco. This is in agreement with the fact that, for o = 1, the system is
not controllable but stabilizable, with a non-controllable mode equal to —1, but not
detectable.



Question 6

(a)

(d)

Let
H=1+4 X zo+ Aozs + - Apu.

The necessary conditions of optimality, for normal extremals, are
L1 =T9 Zo=x3 -~Ip=1Uu
AM=0 do=-A A= -Ano1
At < Aqw, Yw € [-1,1].

} The optimal control as a function of A, is

u* = —sign(A};(t)).

Hence, for any t such that \:(t) # 0, [u*(t)] = 1.

*) From the necessary conditions in part (a) we obtain

() = M¥(0)
N5(t) = A3(0) = AT (0)t .
X3(t) = N5(0) = X5(0)t + M (0) 5

Hence, A4 (t) is a polynomial in ¢ of degree n — 1. Therefore the equation
A()=0

in the unknwon ¢ may have at most n — 1 solutions, say £1, f2, -, tn—1. This means
that if #, € (0, T) then the optimal control will have a switch either from +1 to —1 or
from -1 to +1 at t = t;, and this may occur at most n — 1 times.

If &y = 2o and 23 = v and u =1 then

t2
zo(t) =290+t z1(t) = 10 + 220t + 5

These trajectories are optimal if they are such that ©1(T) = z2(T) = 0, e

2

T
0=z + T =x10 +$20T+?

Eliminating the variable T' > 0 we obtain T = —xz99 > 0 hence

73

1'10—7020.

Hence the set of initial conditions which are driven to the origin at time 7" by the control
u = 1 consists of those [z10, 29g]7 for which

2
20
T — — =0
10 5
with z99 < 0, and the time to reach the origin is T = —z20 > 0.



