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1) Consider the problem of periodogram based spectral estimation.
a) Explain in your own words challenges in spectral estimation from real-world

measurements of discrete time random signals. B3]
b) A practical power spectral density estimator is based upon a recursive al-
2

gorithm, given by s '
2 _ it ]. B /\ — : -"Jgﬂ'fﬂ 1 1
-F%(f)"\Pz—l(f)'i"_N" ;xz[n]e i T T35

where z;[n] = z[n + iN] is the i~th block of NV data samples. The initiali-
sation of the above update equation is By(f) =0, Vf.

i) Discuss in detail the philosophy behind this approach. Comment on
the case A = 0.
(Hint:- V z,y on a straight line, and 0 < \ < 1, point z = Az+(1-N)y
is located on the line between z and y. This is also termed a convex
combination) [4]

ii) Comment on the choice of mixing parameter A, and the range of its
values so that the above estimator is stable. 3]

iii) Based on the choice of X (positive or negative) what filtering operation
does the above recursive algorithm perform (lowpass, highpass, band-
pass, notch)? Discuss the choice of A which enables correct operation
of this power spectrum estimator. (3]

iv) Discuss the possibility of making the mixing parameter \ adaptive.
What would be the benefits of using an adaptive A? [2]

c) With the assumption that the blocks of z[n] are from uncorrelated Gaussian
discrete time random signals, and that 0 < )\ < 1, discuss the behaviour of
the mean and variance of P,(f), as compared to those of the periodogram.
Sketch the mathematical proof for your discussion.

(Hint:' mr{Pper(f)} R~ sz(f)) [5]
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2) Consider the problem of Maximum Entropy (ME) spectral estimation.

a) Give the motivation for parametric spectral estimation techniques. What
are the limitations of periodogram-based spectral estimation? 2]

b) State the objective of the ME spectral estimation technique. 2]

i) Explain the need for the extrapolation of the autocorrelation function.
2l
ii) Sketch the derivation of the ME method.

[4]
iii) Write down the equation for ME spectrum. Establish the relation
between the ME spectrum and autoregressive (AR) spectrum. 2]

iv) Explain the benefits and drawbacks associated with the maximum
entropy spectral estimation. 2]

c) Let z[n] be a first-order Gaussian autoregressive process with power spec-
trum given by

c
(1-az"1)(1 - az)’

Pl = a,c€R

i) With the constraint that the total power in the signal is equal to one,
find the value of ¢ that maximises the entropy of z(n).
(Hint:- for Py;(2) from above, the autocorrelation function can be
found to be r,, (k) = 1-?}1}2‘1'“) [4]

ii) Find the value of a that minimises the entropy of z(n). [2]
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3) Consider nonlinear adaptive filters with feedback (recurrent perceptron).

a) Sketch the block diagram of such a nonlinear adaptive infinite impulse re-
sponse filter. [3]

b) What are the conditions that the nonlinear activation function of a neuron
should satisfy in order to enable training of these filters? 2]

c) Derive the learning algorithm for a recurrent perceptron in the output error
mode. [6]

d) Comment on the similarities and differences between adaptive infinite im-
pulse response (IIR) filters and recurrent perceptrons in terms of their ar-
chitecture. Discuss the effects of the output nonlinearity. 2]

1) Discuss whether the recurrent perceptron can have a similar perfor-
mance to that of an adaptive IIR filter, and identify the region on the
nonlinear activation function where this is possible. 2

2

ii) Sketch the block diagram of a recurrent perceptron which realises the
following difference equation

y(k) = 21y(k—1)+ Lde(k)y(k — 1) — 0.2¢(k — Vy(k — 1) +
+ 0.8z(k) +0.2z(k — 1) 5]
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4) Consider an adaptive Finite Impulse Response (FIR) filter employed in the adap-
tive prediction configuration.

a) Draw the block diagram for this configuration. Explain in your own words
the operation of this scheme. (3]

b) Discuss the relationship between linear adaptive prediction and autoregres-
sive modelling. 3]
c) For an autoregressive (AR) process generated by the difference equation
z[n] = 1.79z[n — 1] — 1.85z[n — 2] + 1.27z[n - 3] - 0.41z[n — 4] + w[n]

where w(n] is a zero mean statistically stationary white noise discrete time
signal with variance o2

i) Calculate the coefficients of the optimum adaptive linear predictor.

2]
ii) Describe how would you use the autocorrelation sequence of this signal
for power spectrum estimation. 2]

d) Define the mean square error performance function J(w) for a two-coefficient
adaptive FIR filter in terms of the autocorrelation matrix of tap input and
cross—correlation between the input and teaching signal. 3]

i) Sketch the contours of constant J(w) as a function of w for a white
noise input. 2]

ii) Sketch a general shape of the contours of constant J(w) as a function
of w for the autoregressive model from c). 2]

iii) Describe in your own words how the method of steepest descent, as
described by recursion

wn +1] = wn] — uV,,J(wn))

can be used to converge in the mean to the minimum of J(w). [3]
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5) Explain the difference between the least squares based and gradient descent
based adaptive filtering methods. 2
a) The Recursive Least Squares (RLS) algorithm is a least squares based al-

b)

gorithm.
i) Give a short explanation of the main idea behind this algorithm. 2]

i) Write down the cost function for the RLS algorithm. What is the role
of the forgetting factor? [3]

A family of stochastic gradient algorithms is based upon approximately
minimising the cost function of the form

J:E{ez”(n)}, P=T12...

where e(n) = d(n) — y(n), namely the difference between the desired re-
sponse d(n) and the output of the adaptive filter y(n) = x7(n)w(n), where
w(n) = [wi(n),...,wy(n)]T is the coefficient (weight) vector of an N-
tap, finitie impulse response, adaptive filter with input vector x(n) =
[z(n), z[(n = 1),...,2(n — N + 1)] .

i) Discuss whether this algorithm would perform better on inputs con-
taminated with impulsive noise, or on inputs contamined with large
variance white noise. 3]

ii) Verify that a least mean square (LMS) type coefficient update for
w(n), based upon J, is given by

w(n+1) =w(n) +2pue”(n)x(n) (5]

Consider the cost function given by (also known as the “mixed norm” cost
function) '

J= Zp: e*(n)

Without going deep into the derivation of the learning algorithm, discuss
the performance of stochastic gradient descent adaptive algorithms based
on this cost function. (5]
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Solutions:
X

1) a) Amount of data is limited - may be very small due to aplication or
requirement of statistical stationarity over the observation. Spectral resolu-
tion should be as fine as possible, however this is related to the amount of
data available (problem in e.g. genomic signal processing, where there are as
few as 12 data points sampled at 8 minutes intervals). The estimator should be
unbiased and have as small variance as possible (Problem with periodogram
based methods). [bookwork]

b)

i) The goal with the spectrum analyser is to continuously refine the spectrum
estimate as new data is read. With the arrival of each new data block, the peri-
odogram is calculated and averaged with the previous spectrum estimate. Notice
that due to the recursive nature of P;, it is suitable for mildly non-stationary
processes. The choice 0 < A < 1 forgets the past value of P,(f) as the new data
is measured. When A = 0 only the periodogram of the most recent data values is
used. The estimator P;(f) is hence an exponentially weighted average of previous
periodograms. [Application of background knowledge]

ii) Notice that this spectral estimator can be considered as a special case of AR(1)
model, where the “random component” is on the right hand side of the equation
(the standard periodogram — homogeneous part of the equation). Therefore, we
have a digital filtering operation, where the choice of A determines whether the
filter is stable or not. Clearly, 0 < A < 1 preserves stability. The convexity in-
troduced by A helps to tune this power spectrum estimator and find the balance
between the effects of filtering (A as a forgetting factor) and the contribution of
the standard periodogram. [Interpretation of new theory]

iii) For A > 0 we have lowpass filtering operation. For A < 0 we have highpass fil-
tering operation. The correct choice is A > 0, since this helps to smooth out the
otherwise noisy periodogram based estimates. [Application of background
knowledge to new problem|

iv) An adaptive A would be even better suited to the possibly non—stationary
nature of the input signal. We could make A gradient adaptive using standard
stochastic gradient approach. [Analysis of new problem)]

¢) It is clear, due to 0 < A < 1 that the bias will be asymptotically the same as
the bias of the standard periodogram.

To show this mathematically denote

2

N-1
Q) = 5 | able ™| = B(f) = ABa(f) + (1= V@), By(f) =0




Therefore

B(f) =) (1= XXQik(f)

k=1

Since Q;(f) is a periodogram, = E{Q;—x(f)} = Puz(f) * Wg(f), i.e. convolution
of true PSD and Bartlett window. Thus for the bias estimation:-

E{B(f)} = (1 = \) [Pua(f) * Wa(f)] D X = (1 = X+ [Py (£) * Wa(f)]
k=0

1 pit+1
l_i

For the variance estimation, due to the low—pass filtering introduced by this
convex combination, the amount of “noise” in the variance estimated will be
reduced, and this clearly contributes to variance reduction for a relatively large
A.

Mathematically, since the blocks are uncorrelated and Gaussian:-

i

var{P(f)} Z(l — MM var{Qi_x(f)}
k=0

Asince var{Qi-x(f)} ~ P2,
var{Fi(f)} (1= X*P2(f)

[Analysis of new example]

X



2) a) Periodogram: straightforward but problems with large variance and
poor resolution. Limitations: Relying on DTFT of an estimated autocorrelation
sequence, the performance of these methods is limited by the length of the data
record. Other problems include problems related to:- frequency resolution
~ 1/N, sidelobes in the spectrum of various window functions are also dependent
on data length, problems when very few data points are present (genomic SP).

'bookwork]

b) The objective of Maximum Entropy extrapolation is to find the sequence of
autocorrelations, r.(k) such that z(n) be as white (random) as possible.

Such constrainst place the least amount of structure on z(n).

In terms of the power spectrum, this correspond to the constraint that P,.(w) be
as flat as possible [bookwork|

i) The motivation for ACF extrapolation comes from the fact that the true PSD
P,, can be expressed as

P

Pl e®) = Z Tz (K)e™ + Z re(k)e ™™

k=-p |k|>p

where 7¢ is the exirapolated ACF. Therefore, in order to obtain a good PSD esti-
mate, we need to perform extrapolation of ACF. [bookwork]

ii) For a Gaussian process with a given autocorrelation sequence r,, (k) for |k| < p,
the Maximum Entropy Power Spectrum minimises entropy H(z) subject to the
constraint that the inverse DFT of P,.(w) equals the given set of autocorrela-
tions for |k| < p, that is

1
2r / Pyo(w)e™dw = r52(k)  |k| <p
20 fe
The values of r.(k) that maximize the entropy may be found by setting the
derivative of H(x) wrt ri(k) equal to zero:-

OH(z) 1 [* 1 OPyw), _
or:(k) 2w _/;,, Prp(w) Or: =0

8.

k| > p

Notice that Qi’;’j’—j“’) =e™ = L [T Pﬁ:(w)eﬂ‘“’dw =0, |k|l>p.

Q) = iy = 2 teal)e

k=-p

[bookwork]
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iii) Pem 1s an all-pole spectrum, given by

Bron(w) = —POE___ b _ b@FP
mem Ap(w)A;(w) |1+Z£=1aﬂ(k)e_3kw|2 |eHap|2

and its coefficients can be found from Yule-Walker equations. [bookwork]

iv) ME based spectral estimation can be applied even in the absence of any infor-
mation or constraints on a process z(n). Only a set of ACF values is needed. The
ACF extrapolation within ME estimation is preferrable to the classical approach
where 7,(k) =0 |k| > p. Since MEM estimation imposes an all-pole model on
the data, the estimated spectrum may not be very accurate if the data do not
conform to this assumption. [bookwork]

c)

i) Since

. _ £ k
f-’:w(k) = 1— ]aliﬂl |

and the unit power constraint is equivalent to 7,-(0) = 1, this requires that
c=1-|al]
Thus the power spectrum becomes

1— |al?
(1—az"1)(1 —az)

P:c:r(z) = = UgQ(Z)Q(Z_l)

where
os=1-|a?

and Q(z) is an AR(1) spectrum, for which the difference equation is z[n] =
azn — 1] + wn].

Since maximising the entropy is equivalent to maximising oy, then the maximum
entropy spectrum is formed when a = 0, that is z[n] is white noise (From the
above difference equation, for a = 0 we have z[n] = w(n]). [New example]

ii) From the above, the minimum entropy spectrum is formed in the limit as

la| — 1, which corresponds to a harmonic process (pole on the unit circle —
marginal stability — z[n] = sinewave). [New example]

o \C



3) a) Similar to an adaptive IIR filter with the addition of output nonlinearity
®, see Figure. [bookwork]

b) Continuous, preferrably monotonically increasing and saturation type non-
linearity, such as tanh or arctan. [bookwork, worked example]

Quiput

¥(k)

Figure 1: Recurrent perceptron

c) Define the gradient Ve(E(k)) for cost function E(k) = 1e?(k) as
OE(k
Vo(E(k) = S2E) _ ¢o5(k)Vecos(k) = —eon(k)Veuos()
90 (k)
where O(k) = [bi(k),...,bu(k),1,a1(k),..., a,N(k)]T. The gradient vector con-
sists of partial derivatives of the output with respect to filter coefficients

_[0yor(k)  Oyor(k) Oyor(k) Byor(k)  yor(k)]T

Ve1 ]'k - ¥y ' ) 1Ry
oyor(k) = | 503 BObrg (k) D1 (k) Bar(k) Ban (k)
Take the derivatives of both sides wrt a;(k) and b;(k)
Iyor(k) yor(k —m)

N
Dl " ?fox(k—i)-&-zzlam(k) da;(k)

dork) L Byor(k —m)
B " x(k—j)+mz_lam(k) 50, (F)
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Since y(k) = @ (u”(k)w(k)), where u is the total input vector, similarly to the
update of IR filters we have

dyou(k) _ o 3 dyor(k —m)
k) (k) [ui(k) +mz=:1 wm-i—M(k)m]

Denote m;(k) = aay&_%(:;), i=1,...,M+ N +1, to yield

m=1

mi(k) ~ @' (k) [ui(k) + ) Wonns (k)mi(k — m)]

and the weight update becomes
wik+1) = w(k) + n(k)e(k)m(k), m(k) =[ma(k),..., Tarwia (] (1)

[bookwork, worked example]
d) Recurrent perceptron = IIR filter with an additional output saturating non-
linearity [Worked example]

i) If the recurrent perceptron operates in the “quasi-linear” region of the non-
linear activation function, the performances can be similar. However, recurrent
perceptron has the advantage of being BIBO stable. [New example]

ii) This is clearly a bilinear model, and its realisation as a recurrent percep-
tron with multiplicative synapses is given below, where ¢; = 2.1,ay = 0.8,a; =

‘ x(k)

y(k)

Figure 2: Bilinear model realised as a recurrent perceptron

0.2, bl‘l = —0.2,3}0?1 = 1.4. [New example]



4) a) The teaching signal d(n) is advanced in time with respect to the input
z. This way we can perform ahead prediction using the configuration below.
[bookwork]

Y

i(‘.‘_).___.l Pl | Adaptive | y(K)
Y Filter

e(k) A
®

d(k)

Figure 3: Adaptive prediction configuration

b) For an AR process z(n) = Y ¥_, a;z(n — 1) + w(n), the prediction is performed
according to 2(n) = ©_, a;2(n). Therefore the prediction error is white.

If the prediction error e(n) at the output of an adaptive FIR filter is white, then
the adaptive filter is a realisation of the underlying AR model. [bookwork and
analysis of new example]

¢)
i) Due to the duality of autoregressive modelling and FIR adaptive filtering from
b), we have w; = —1.79,w, = 1.85, w3 = —1.27, ws = 0.41. [New example]

ii) The ACF is related to the coefficients of the AR model, therefore it is possible
to simply write down the AR spectrum. [Bookwork and new example]

d) J(w) = o] — 2p"w + wTRw. [bookwork and new example]

i) concentric circles. [bookwork]

ii) elliptical contours, since signal z is a coloured AR(4) process. [New example
and bookwork]

iii) The adaptation would follow the negative of the gradient and converge to the
minimum of the surface defined by J(w). [bookwork]

S



5) Least squares filtering uses a totally deterministic cost function, whereas
gradient descent methods use some sort of E{e?[n]}. [bookwork]
a)
i) No assumptions on the statistics of the input needed. We wish to solve
w(n+1) =R (n+1)p(n +1). Due to the ever increasing size of the variables
included, RLS calculates recursively the sample correlation matrix as R(n+1) =
R(n) +z(n + 1)zT(n +1). [bookwork]
ii) J(n) = > p_; A" *e?(k). The forgetting factor A provides weighting of the
samples far away in time, serving therefore as some sort of memory. This helps
with the processing of nonstationary signals. [bookwork]

b) i) For p small, it would still perform satisfactorily on signals with impulsive
noise, however for p large, that the update would become huge and cause di-
vergence. Hence for p large this algorithm would perform much better on white
noise with large variance. [New example]

i)

win+1) = wn) = pVaTumwm)
J=eP(n) = V,J =2 (n)V,e(n)
e(n) d(n) — xT(n)w(n)
= w(n+1)=w(n)+2pue(n)x(n)

[New example]

¢) This so-called mixed norm cost function combines the LMS J = ¢?(n), LMF
J = e*(n), and other higher order instantancous cost functions. It can be of
great advantage of the constitutive sub-algorithms are properly weighted. [New
example]



