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(i) A real digital image f(x,v) of size M x N has Discrete Fourier Transform F(u,v).
G(u,v) is created by the algorithm G(u,v)=F(u,v) followed by G(u,,v,)=0 and
G(M —u,,N—v,)=0, where (i,.,v,) is a specific two-dimensional frequency pair. A
new image g(x,y) is created by taking the Inverse Discrete Fourier Transform of
G(u,v). Find the difference f(x,y)—g(x.¥).

[3]

(11) Find the energy in an image of size M x N in a given band of frequencies u, <u <u,,
v, <v <v,, as a percentage of the total energy. [3]

Let f(x,y) denote an M x M -point two-dimensional (2-D) sequence (M is a positive
power of 2). In implementing the 2-D Discrete Walsh Transform (DWT) of f(x,y), we
relate f(x,y) toanew M x M -point sequence W (u,v).

(1) Define the sequence W (u,v) interms of f(x,y). 1]
(i) Find the Walsh Transform of the following image at points (0,0) and (3,0).
5 6 8 10
6 6 5 7
4 5 3 6
& 7 5 5
[4]

Consider the population of vectors f of the form

I AGy)
L= L@ (x, y)} '

Each component f(x,y),i=12 represents an image. The population arises from the
formation of the vectors across the entire collection of pixels.
Consider now a population of vectors g of the form

{g, (x.)

g =

- gZ (X, )’)

where the vectors g are the Karhunen-Loeve transforms of the vectors [ .

The mean of the population f calculated as part of the transform is

0.5
o, = .
L 105

The covariance matrix of the population f calculated as part of the transform is

115 2
g/‘ =
L2512 1

with eigenvalues A, =0.2331 and A, =0.0069.
(1) Find the vectors g [5]
(i1) Find the covariance matrix of the population g . 2]

(1ii) Suppose that a credible job could be done of reconstructing approximations to the two
original images by using one principal component image. What would be the mean square
error incurred in doing so? Express your answer as a percentage of the maximum possible
error. 2]
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(a) Consider a 04 x 64 image with 4 grey levels. The normalised grey levels are 0, 1/3, 2/3
and 1. The number of pixels with the corresponding grey levels, are shown in the following
table.

Grey level Number of pixels
0 1813
1/3 1506
2/3 574
1 203

(1) Draw the histogram of the image.

[1]
(i1) Determine the equalised histogram.

2]
(111) Draw the equalised histogram.

1]

(b) What happens if you apply histogram equalisation twice to the same image? Justify your
answer.

[4]
(c¢) After histogram equalisation will an image have more, the same or fewer distinct grey levels?
Justify your answer.

[4]
[4]

(e) Let f(x.y) denote an M x N image. Suppose that the pixel intensities » are represented by

8 bits. Moreover the histogram A(r) of the image is available. Find the value of
-1 - ) ) ) )
> Z]F(u,v)[' . with F(u,v) the Discrete Fourier Transform of the image.

w=0 v=0

(d) A mean filter is a linear filter but a median filter is not. Why? Justify your answer.

[4]
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We are given the blurred and noisy version g(x,y) of an image f(x,y) such that in

lexicographic ordering

g=Hf +n

where A is the degradation matrix which is assumed to be block-circulant, and # is the noise
term which is assumed to be zero mean, independent from the original image and white.
Moreover, / and g are the lexicographically ordered original and degraded image respectively.

(a)

(1) Consider the inverse filtering image restoration technique. Write down without proof the
expressions for both the inverse filter estimator and the restored image both in the spatial
domain and the frequency domain. Explain all symbols used.

.. - . . . . - . [2]

(i1) Discuss briefly the disadvantages of the inverse filtering image restoration technique.

' _ (2]

(ii)Consider the pseudo-inverse filtering image restoration technique. Write down the
expression for the pseudo-inverse filter estimator in the frequency domain. Discuss
briefly the advantage of the pseudo-inverse filtering image restoration technique.

12}

(i) Consider the iterative constrained least squares image restoration technique. Write down
without proof the expressions for both the iterative constrained least squares estimator
and the restored image both in the spatial domain. Explain all symbols used.

[31

(11) Discuss the method of spatially adaptive iterative constrained least squares image
restoration technique.

[5]

One class of filters considered for reducing background noise in images has a frequency
response W (u,v) given by

B
S g (u,v)

Wiu,v)=
(w.v) Sy +S,, W)

where S, (u,v) is the original image power spectrum and S, (u,v) is the noise power

spectrum. If S =1, the filter is a Wiener filter. If S :%, the filter is called a power spectrum

filter. Suppose S (u,v)has a lowpass character and its amplitude decreases as u and v

increase, while S, (u,v) is approximately constant independent of » and v.

Hi

(1) Foragiven S ;(u,v) and S, (u,v), which filter reduces more the noise, the Wiener filter

nn
or the power spectrum filter? Justify your answer.

[3]

(ii) For a given Sz (u,v) and S, (u,v), which filter blurs the image more, the Wiener filter

nn
or the power spectrum filter? Justify your answer.

[3]
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(a) Consider an image with intensity f(x,y) that can take three possible values

A=0,B=128,C =255 with the probabilities shown in Figure 4.1 below. We wish to
compress the image using the lossless JPEG compression standard. Suppose that the
prediction residual for pixel with intensity x in the following Figure 4.2 is defined as
r=x—y where y is the function y=a.
Find the residuals, their probabilities and their corresponding codewords. Suppose that the
Huffman codewords for the following categories in the lossless JPEG are:

Category 0: 010

Category 7: 11110

Category 8: 111110

Intensity Probability

A4=0 1
6
B =128 2
6
C =255 3
6

Figure 4.1

s b

a x

Figure 4.2

8]

{b) Consider a Discrete Memoryless Source (DMS) that consists of two symbols s,,s, with

probabilities p,, p, respectively with p, =0.8 and p, =0.2. Suppose that the two symbols
are to be transmitted using extended by two Huffman coding.
(1) Find the Huffman codewords. Is Huffman code unique? Justify your answer.

(5]

(11) Find the Huffman codewords if it is known that the probability of a 0 being transmitted as
a 1 is higher than the probability of a | being transmitted as a 0.

[5]
(2]

(i1i) Determine the redundancy of the Huffman code for this example.
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: — - = (il FCeddvv b
PSS Nj6e v LenPhEs

A'\-’/“J}U - :’)\0(3 (-

@ 0 frp)-gr)=3 5 (Fv)-Gluvye e

u=0 v=0
:F(llo,VO)QIZ”(uox/M+VOy/N) +F(M_uO,M_vo)ejZH[(M~u0)x/M+(va0)y/N]

— P_Y(uo Ve )ej2ﬂ(u0x/M+v0y/N) + F*(uo Vo)efj27!(u0x/M+v0y/N)
— F(u,,v, Yo 2RI M vy IN) F*(, VO)(ejzn(uox/M+v0y/N))'
(3o >
- F(u, vo)ejZﬂ(uox/M+voy/N) + (F(uo v, )ejzn(uox/Mwoy/N))'
=2 Re{F(uO’vo)e]'Zﬂ(uox/M+v0y/N)}
The function Re{} denotes the real part of a complex number.
If we write F(u,,v,) = A(u,,v,) + jB(u,,v,) we have
f(x.y)-g(x.y)

=2{A(uy,vy)cos[ 2z (uyx /| M +v,y/ N)| - Buy,vy) sin[2z(ugx /M +v,y/ N)1}
Thus, the difference f(x, y) — g(x,y) is a 2-D sinewave.

[31
Uy YV, M-1N-1
(ii) The required energy is 3. 3 |F (u,v)| The total energy is Y, ¥ |F(x, v)| As a
U= v=v, u=0 v=0

percentage of the total energy the required is ( Z Z |F(u, v)| / Z Z]F (u, v)[ %100.
3]

(b)

(i) Wu,v)= MZ Mz f(x, y)['ﬁ(_l)(b,-(x)b"vl,-(u)+b,~(y>bn-,-,-(v»}

1
M . i=0
[
(i1) For the calculation of W (0,0) we have:
u =(0),, =(00), = b, (u) =0,b,(u)=0
v=(0), :(00)2 = b,(v) =0,b,(1)=0
WO0=1"% & 1, y)[n( 00y ‘”]

x=0 y=0
M-1M-1

= LSS y)[ e |7 2 S =2 =2
x=0 y=0 i=0 x=0 y=0

For the calculation of W (3,0) we have:

u=03), =011, =b,w)=15b(1u)=1

v=(0),, :(OO)2 =b,(v)=0,5,(v)=0

w(0,0) —ﬁ T3 s y){n( PG erteney °>}

x=0 y=0

T3 e

RS RO
- 2 ) e |1

:X/I“ E(f(o N-FAL-r2y+/G, y))——
14]

(c)
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0.3827 d
—-0.9239

(i) First we must find the cigenvectors of C .. These are e, :[

~09239 o e
e = . The matrix 4 is A={"1 |.
-0.3827 ¢l
Therefore g =A(f —m,) [5]
Qi) C 0.2331 0 5
i =
- 0 0.0069 12]

(111) 0.0069. 100% of the maximum error.
12]

2 ¢
E4.08/ISE4.33/SO14 Page 8 of 5



2.

(a) Imagine a 64 x 64 image with 4 grey levels. The normalised grey levels are 0, 1/3, 2/3

and 1.
Grey level Number of pixels
0 1813
1/3 1506
2/3 574
| 203

(1) p(0)=1813/4096, p(1/3)=1506/4096, p(2/3)=574/4096, p(1)=203/4096 .

Drawing is obvious.

(i) 7(0)=1813/4096, T(1/3)=(1506 +1813)/4096, 7(2/3)=(574 +1506 +1813) /4096,

T()=1

(111) Obvious.

(b) s=T(r)=|p,(w)aw . Suppose we histogram equalise s to get
1]

z=T(s)=[p,(w)aw = [1-dw =s . So after the first time nothing happens.
0 0

(c) The same as cach grey level is mapped to a new distinct grey level

(d) Median filters are non linear filters because for two sequences x(n) and y(n)
median {x(n) + y(n)};t median {x(n)}+ median {y(n)}

For example consider two signals with three samples each, i.e.,

x(n)={10,1,1} and y(n) = {3,5,10} . Therefore, x(n)+ y(n)={13,6,11}
median {x(n)} =1, median {y(n)}= 5, median {x(n) + y(n)}=11. Thus,

median {x(r) + y(n)}=11% 6 = median {x(n)} + median {y(n)}

M-IN-1

d ¥ TF@v) = S fe

u=0 v=0 x=0 y=0

Suppose that A(r) = ’,r:O
upp (r) v,

with intensity r . In that case A%IA[Z:I’F (u, v)| = Z Z f(x,y)* = }:r n,

u=0 v=0

x=0 yv=0

3 oo
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[4]

,...»255 = n, = MNh(r). Note that n, is the number of pixels

[4]
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(1)

(iii)

(b) (1)

(i1)

The objective is to minimize J(f) = |n(f )||2 =|y - Hf ||2 . We set the first derivative of the

YO _ o HT(y-H)=0. If H' cxists then

cost function equal to zero

f=(H'H)'H"y. If M=N then f=H"y. According to the previous analysis if H
(and therefore H™) is block circulant the above problem can be solved as a set of M x N
H* ()Y (u.v) H‘(u,v)Y(u,v)}
IH ()" IH (u,v)
12]

Suppose first that the additive noise n(i, j) is negligible. A problem arises if H(u,v)
becomes very small or zero for some point (#,v) or for a whole region in the (u,v)

plane. In that region inverse filtering cannot be applied. Note that in most real
applications H (x,v) drops off rapidly as a function of distance from the origin. If these

points are known they can be neglected in the computation of F(u,v) .

scalar problems as follows F'(u,v)=

= f,))= S“l{

In the presence of external noise we have that
Fluwy = @ @) -N@v) _ H @) @) H @v)NGey)
’ |H (v IH (u,v)]] H (u,v)]

; N(u,v) :
F@u,v)=F(u,v)- H .If H(u,v) becomes very small, the term N(x,v) dominates
the result.

(2]
H @) e
A H @)
Fuv)=
0 H(u,v)=0

(2

In this method we attempt to solve the problem of constrained restoration iteratively. As
already mentioned the following functional is minimized M(f,a) =y - Hf ||2 +a|Cf ”2 .
The necessary condition for a minimum is that the gradient of M (f,a) is equal to zero.
That is ®(f)=VM{E,a)=(HH+aC'C)f -H'y . The initial estimate and the
updating rule for obtaining the restored image are now given by

fy = .BHTY

fe.q =1, +B[H"y —(H'H+aC O, ]

It can be proved that the above iteration (known as Iterative CLS or Tikhonov-Miller

Method) converges if 0< G <1—l—2_| where A_, is the maximum cigenvalue of the

matrix (HTH+aC"C).

K]
The functional to be minimized takes the form M(f,a) = |y — Hf|",, +&|Cf|,, where
ly—Hf| ., =(y—HH*W,(y-Hf), |Cf[,, =(CH"W,(CH, W,W, arc diagonal
matrices, the choice of which can be justified in various ways. The entries in both

6 ¢
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matrices arc non-negative values and less than or equal to unity. In that case
O(f) = V,M(F,a) = (H W W,H + oC"W; W,C)f -H'W,y . A more specific case is
M(f,a) =y —Hf ||2 +a|Cf ||2w where the weighting matrix is incorporated only in the
regularization term. This method is known as weighted regularised image restoration.
The entries in matrix W will be chosen so that the high-pass filter is only effective in the
areas of low activity and a very little smoothing takes place in the edge areas.
151
()

(i) The power B=1/2 increases the value of the filter so the power spectrum filter removes

less noise than the Wiener filter.

[3]
(i1) According to (i) the Wiener filter.

31

N
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