IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2003**

MSc and EEE/ISE PART IV: M.Eng. and ACGI

CODING THEORY

Tuesday, 29 April 10:00 am

Time allowed: 3:00 hours

There are SIX questions on this paper.

Answer FOUR questions.

Corrected Copy

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

O.R.L. Pretzel

Second Marker(s): A. Manikas

A table of the field of order 16

log	0	1	12	2	9	13	7	3	4	10	5	14	11	8	6
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	3	4	6	8	10	12	14	9	11	13	15	1	3	5	7
3	2	1	5	12	15	10	9	1	2	7	4	13	14	11	8
4	5	6	7	9	13	1	5	11	15	3	7	2	6	10	14
5	4	7	6	1	8	7	2	3	6	9	12	14	11	4	1
6	7	4	5	2	3	13	11	2	4	14	8	3	5	15	9
7	6	5	4	3	2	1	12	10	13	4	3	15	8	1	6
8	9	10	11	12	13	14	15	15	7	6	14	4	12	13	5
9	8	11	10	13	12	15	14	1	14	12	5	8	1	3	10
10	11	8	9	14	15	12	13	2	3	11	1	5	15	8	$2 \mid$
11	10	9	8	15	14	13	12	3	2	1	10	9	2	6	13
12	13	14	15	8	9	10	11	4	5	6	7	6	10	7	11
13	12	15	14	9	8	11	10	5	4	7	6	1	7	9	4
14	15	12	13	10	11	8	9	6	7	4	5	2	3	2	12
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	3

Below diagonal a+b, on or above $a\times b$, $0+a=a,\,a+a=0,\,0\times a=0$

- 1. We shall say that two linear codes are *equivalent* if they have the same block-length, rank and minimum distance.
 - a. Let C be the Triple Check Code introduced in the lectures, which has check matrix

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}.$$

Construct the check matrix of the code C' obtained from C by adding an overall parity check bit, so that all words have even weight.

Show that C' has block length 7 and can correct single bit errors in a word, proving any result from the lectures that you quote. Justifying your conclusion carefully, determine whether C' is equivalent to the Hamming code Ham(3). [7]

b. Let C'' be the code obtained by puncturing Ham(3), that is by deleting the last entry of all code words of Ham(3). Construct a check matrix for C''. [4]

Find the rank and minimum distance of C''. Is C'' equivalent to the Triple Check Code?

2. Construct, with justification, a binary linear code of block length 16, minimum distance 4 and largest possible rank, by producing generator and check matrices. What is the rank?

construction: [8]

justification: [8]

Show that your code can correct single bit errors in a block and simultaneously detect double bit errors. [4]

3. The field GF(5) consists of the integers 0, ..., 4 with addition and multiplication modulo 5. Find an irreducible polynomial of degree 2 over GF(5), explaining why it is irreducible.

Explain how your polynomial can be used to turn the set of polynomials ax + b with $a, b \in GF(5)$ into a field F, giving a brief explanation how to perform each of the four operations in F.

Perform the following calculations in your field:

add
$$3x + 2$$
 and $2x + 1$; [1] multiply $2x + 1$ by $4x + 1$; [2]

divide
$$4x + 1$$
 by $x + 3$.

4. Define the characteristic of a finite field and prove that it is a prime number.

[4]

Prove that in a field of characteristic p the equation $(a + b)^p = a^p + b^p$ holds for all a and b. [4]

Deduce that an element of a field of characteristic p cannot have more than one pth root. [4]

Show that if F is a finite field of characteristic p, then every element of F has a pth root. [4]

Suppose that α is a primitive element of a field of order 256, find in the form α^n all the fourth roots of α^7 .

5. Three polynomial codes A, B, C of block length 15, have generator polynomials as follows:

$$A: x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1$$

$$B: x^{10} + x^9 + x^8 + x^6 + x^4 + x^2 + x + 1$$

$$C: x^9 + x^8 + x^5 + x^4 + x^3 + 1$$

For each of A and B determine whether the code is cyclic or not.

[4 each]

The code C is cyclic. Find its check polynomial

[4]

Determine for each of the following words whether it is a code word of C.

6. The Reed-Solomon Code RS(4,3) is used to transmit a message. One received word is

Assuming that no more than three symbol errors occured find the transmitted code word. [20]

To shorten the calculation of the roots of the error locator you may verify that they correspond to the positions in which the received symbol is 5.