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E3.16 Artificial Intelligence MODEL ANSWERS Dr J V Pitt
14 1 273

y
(a) 6 marks (Bookwork)

(b) 6 marks (Application)

(c) 6 marks (Bookwork/Understanding)
(d) 2 marks (Bookwork/Understanding

(@)

strategy:

uniform cost: ‘optimal’ node based on lowest actual cost from start-node as
computed by cost function g

best first: ‘optimal’ node based on lowest estimated cost from node-goal as
computed by heuristic function h

A*: ‘optimal’ node based on lowest estimated cost of path from start-goal through
node as computed by estimated cost functionf=g + h

Completeness

Uniform cost: yes

Best first: no, infinite paths and oscillations
A* search: yes

Optimality

Uniform cost: yes, on condition that cost of successor node is greater than node
Best first: no, first node found

A* search: yes

Complexity (branching factor b and depth of solution d)
Uniform cost: time and space complexity both O(b/d)
Best first: O(bAm) where m is maximum depth of tree
A* search: exponential in length of the path

(b)
Heuristic 1: count the number of tiles out of place.
Heuristic 2: count distance out of place divided by 2

Heuristic needs to be admissible.
Needs to be admissible to ensure that h does not overestimate.

Heuristic 1: admissible because have to move at least this many tiles, but maybe
more

Heuristic 2: admissible because have to make at least this many moves, and
maybe more.

(c)

Let f* be cost of optimal node.

A* expands all nodes with f-cost less than f*.
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A* expands some nodes with f-cost = *.
A* expands no nodes with f-cost > f*.

Since f(n) = g(n) + h(n), this means that A* expands all those nodes such that
h(n) < f* - g(n).

In other words, the more nodes for which this relation holds, the more nodes will
be expanded by A* using this heuristic, and the less efficiently will the search
space be explored.

Alternatively, consider histogram of nodes according to actual f-cost, whereby
f-actual(n) = g(n) + h-actual(n).
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Only those nodes to the left of the f* bar will be expanded. In practice of course,
we don’t have h-actual we just have h. Thus we could have a redistribution of the
histogram which pushes more of the nodes to the left of the f* bar.

In other words, we want to ensure f* < f(n) + h(n) < f-actual(n)

With the two heuristics given, the second is more informed.

(d)
= making heuristics more accurate or efficient, i.e. more informed
m try to reduce the effective branching factor b*
—  b* the branching factor that a uniform tree of depth d needs
for N nodes
N=1+b*+ (b*)2+ D)3+ ...+ (b)d
— the best heuristics will minimize b* (search is a straight line if
b*is 1...)
w make h(n) as large as possible without over-estimating
— e.g. by combining heuristics
— but don't forget to consider the cost of computing the
heuristic(s)...
> e.g. by inventing heuristics
= relax the problem
— express logically and drop the conditions
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2.
(

(
(

a) 8 marks (Application)
b) 8 marks (Application)
c) 4 marks (Bookwork/Understanding)

(a)

sublist( L, SL ) :-
append( Front, Back, L ),
append( Mid, Rest, Back ).

monotonic( L ) :-
L = [H|T],
monotonic_ascending( H, T, a ).
monotonic( L ) :-
L = [H|T],
monotonic_descending( H, T, d ).

monotonic_ascending( _, [1, a ).
monotonic_ascending( I, [H|T], a ) :-
I < H,
monotonic_ascending( H, T, a ).
monotonic_descending( _, [1, 4 ).
monotonic_descending( I, [H|T], 4 ) :-

I > H,
monotonic_descending{( H, T, d ).

length( [], 0 ).

length( [H|T], N1 )
length{( T, N ),
Nl is N + 1.

reverse( [1, [] ).

reverse{ [H|T], RevH ) :-
reverse( T, Rev ),
append( Rev, [H], RevH ).

(b)

DrJ V Pitt

Representation: list of 5 integers, 1 indicating smallest, 2 next smallest and so

on.
Initial state: [1,5,2,3,4]

Goal state: [1,2,3,4,5]

Artificial Intelligence
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State_change( flip, OldState, NewState ) :-
Sublist( OldState, SL ),
Monotonic( SL ),
Length( SL, L), L > 1,
Append( Front, Back, OldState ),
Append( SL, Rest, Back ),
Reverse( SL, RevSL ),
Append( RevSL, Rest, NewBack )
Append( Front, NewBack, NewState ).

Note sublist will generate all sublists on backtracking. Could have used findall.
So the way this works:

Generate (for each) sublist SL
Is it montonic
Is it longer than one (flipping has no effect otherwise)
Break down oldstate
Oldstate = front ++ SL ++ Rest  Back = SL ++ Rest
Reverse the sublist
Build Newstate

Newstate = front ++ RevSL ++ Rest Newback = RevSL ++
Rest
(c)
G’ = <n0, Op>

This implicitly defines, inductively, an infinite set of paths, where
PO = { <n0> }

Pi+1 = { p ++ <n> | p is a path in Pi, op is an operator in Op, n = op(frontier(p)) }
Where frontier(p) returns the frontier node, or last element, of the path p.

Then graph search algorithm, with breadth first, takes each member of Pi,

computes the members of Pi+1, and so on; depth first search, takes one member
of Pi, computes derived members of Pi+1, takes one element of Pi+1, computes

derived members of Pi+2, and so on.
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3.
(a) 10 marks (Bookwork, Application)
(b) 10 marks (Bookwork, Applciation)

(a)
data structure
> jnformation required about each grid location
w co-ordinate of current location in the robot’'s own (relative) system
w what is to the ‘north’, ‘south’, ‘east’ and ‘west’ (robot’'s own system)
w» whether the robot has visited this location or not
w the reward associated with this location

steps in procedure
> adopt basic strategy
w e.g. random walk, follow left wall, ..., with some mechanism for loop
checking
> initialise (starting grid location)
w assign a coordinate value (say (0,0))
w set reward to 0.0 and visited to true
w perceive and record the result of performing action A (go up, down,
left or right)
— update pointers, set rewards to 0.0, visited to false, assign
relative co-ordinate
> explore
w choose next direction to go in and move one grid location in that
direction
w set visited for to ‘true’ for that grid location
m perceive and record the result of performing action A (go up, down,
left or right)
— update pointers, set rewards to 0.0, visited to false, assign
relative co-ordinate
w repeat until exit location is found
> assign (reward or credit assignment)
w set reward of exit location, when found, to 10
w set reward of each visited grid location to 0.9 * maximum reward of
any grid location that can be moved to by doing action A in that
location
w propagate values back until all visited grid locations are assigned a
reward
(with loop checking...)

assumptions
w it has no a priori knowledge about its environment (size and
contents)
w it can move forward exactly one grid square in direction currently facing
w it can turn through exactly 90 degrees and knows which way it is facing
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w four sensors detect if a wall is in front, behind, to its left, and/or to its right
w all movements and perceptions are carried out 100% accurately

Example
Could be anything

(b)
global map of environment
> calculating potential fields
w constants required:
w 1), a scaling factor on the repulsive potential force at any point
w £ a scaling factor on the attractive potential force at any point
w0, the distance of influence factor, beyond which an obstacle has
no repulsive effect
> procedure
w derive C-regions (one for each obstacle)
w for each co-ordinate q,
calculate the repulsive potential at g,
by appying the following function to each C-region C:

Urep(q) = 0.5n (14(q) - 140)2, ifr(g) <10
= 0, otherwise

where r(q) is the distance from g to the nearest coordinate in the C-region given

by:

r(g) = min [[g — q|/forall @’in C

moving to goal: use attractive potential
> for a robot moving from a current location q to a goal location ggoal ,
calculate the next best location to move in by adding in the attractive
potential of the goal location
w for each co-ordinate g’ adjacent to g, calculate the attractive
potential by:
Uatt(q’) = 0.5¢rgoal(q’)2
where rgoal(q’) = //q’ — qgoal// for all ¢’in C

adding in moving object
treat as local C-region

choosing next move:
> the best co-ordinate to move to is given by:
w for each co-ordinate g’ adjacent to g (the current location), sum the
values obtained from the previous calculations:
-~ Usum(q’) = Urep(q’) + Uatt(q’) + Uloc(q’)
w move to the co-ordinate g’ with the lowest value of Usum
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4.
(

a) 6 marks (Application)

(b) 12 marks (Application)
(c) 2 marks (Understanding)

(a)

Pr) ~(p—=9e(rvye)

branch 1
1 ~(p—q)
2 pvyg

PB

e, pr, 1
a,l

a, 1
b,2,3
4.5

(P ~(eva)e—(par9)

branch 1

1 pvg PB

2 ~(pATg)  eprl
3 pAq -, 2
4 -p a,3

5 —q a,3

6 ¢ b, 1,4
close 5,6

(Pr) —~(@wrg—->neo@—o(@—r)

branch 1

1 (parg)—r) PB
2 Ap->@—>n) e, pr, 1
3 p a,?2
4 —(g->r) a,?2
5 ¢q a,4
6 —r a, 4
branch 1.1

TArqg PB

8r b, 1,7

close 6,8

branch 1.2

9 (pnangq) PB

10 —~q b,3,9

close 5,10

Artificial Intelligence

MODEL ANSWERS Dr J V Pitt

branch 2

6 p—>q PB

7 ~(pvq  eprb

8 -p a,’7

9 —q a,7

10 p -, 8

11 q b,6,10

close 9,11

branch 2

7 “(pVq) PB

8 ~(pATq) eprb

9 - a,’7

10 -q a,’

11 —-q b, 8, 10

12 q -, 10

close 10,12
branch 2
11 ((pArgqg)—>r) PB
12 p—(@—>r) e, pr
13 PAq a, 11
14 -7 a,l1
15 P a, 13
16 q a, 14
17 q—or b, 12,15
18 r b, 17,16
close 14, 18
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(b)

Vx,y. general(x) A captain(y) — order(x,y)
Vx,y. captain(x) A private(y) — order(x,y)
Vx,y,z. order(x,y) A order(y,z) — order(x,z)
general(chaos)

captain(scarlet)

private(benjamin)

substituting g = general, ¢ = captain, p = private, o = order

! —g(x) v ~e(y) Vv o(x,y)

2 ~e(x) v p(y) V ox,y)

3 ~o(x,y) v mo(y,2) V o(x,z)
4 g(chaos)

5 c(scarlet)

6 p(benjamin)

query —o(chaos,benjamin)

DrJ V Pitt

resolve with 3 —o(chaos,y) v ~o(y,benjamin) [x = chaos, z =
benjamin]

resolve with 1 —g(chaos) v ~c(yl) v ~o(y,benjamin) [x = chaos,y = yl]
resolve with 4 —c(y1) v ~o(y,benjamin)

resolve with 5 —o(scarlet,benjamin) [y =y1 = scarlet]

resolve with 2 —c(scarlet) v —p(benjamin) [x = scarlet, y = benjamin]
resolve with 5 —p(benjamin)

resolve with 6 contradiction

conclude o(chaos,benjamin), as required

(c)

by solving the sub-goals in left to right order, and attempting to unify each sub-

goal with each head of every rule.

For every rule that unifies, this is a ‘state change’: the proof procedure is a kind

of search.

Algorithm is depth first and generate the alternatives on back-tracking.

Artificial Intelligence
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5

(a) 4 marks, Bookwork

(b) 7 marks, Application/Understanding
(c) 6 marks, Application

(d) 3 marks, Application

(a)

Soundness, every proof is a theorem
Completeness, every theorem can be proved
Decidable, stops with yes or no

Efficient, coping with exponential complexity

(b)
e
e —>C
e—d
end

pl e
p2 e—>c¢

p3 e—>d

—conc ~(c A d)

1 c b, pl, p2

2 d b, pl, p3

3 -d b, 1, —conc
close 2,3

Using a resource twice when “in reality” can only use it once, the and is really an
or

As in modal logics, add labels to the formulas, change the proof rules e.g new
beta (b) rule, closure conditions check the labels are OK according to the logic

a:p—qg

B:p

...........

(€)
Let M = <W,R,P>with W = { o, B}, R={ (a, B) } and ||p|| = { o}

So EM,a p and EM,b p
If we have axioms schema B then we also have EM,a o0p

Since aRb then EM,b Op
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But EM,b Op if and only if there is a world w st bRw and EM,w p
Since there is no such world w this is a contradiction.

if EM.a p then we need to show EM,a O0p

Let b be any world such that aRb.

Then by symmetry bRa.

So by semantics of O EM,b Op

Since b was any world accessible from a, then it must be true of every world accessible
froma

So by semantics of O, FM,a O0p as required

(d)

“conc 1:~(p — 0O0p)

1 l:p a, ~conc
2 1:—00p a, —conc
3 2:~Op O rule

4 1:—p O rule
close 1,4
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6.

(a) 6 marks, Bookwork
(b) 8 marks, Application
(c) 6 marks, Bookwork/Understanding

(@)

MODEL ANSWERS

1 distributed systems without global clocks
I is that the ordering of event can only be determined locally
1 If an event e precedes an event f, then e potentially caused f.
I A vector clock is defined over an auctioneer agent A and a set of B buying
agents with cardinality n

1 (n+1)-ary vector of natural numbers v = <A, b1, ..., bn>.
I The starting clock of every agentis <0, 0, ..., 0>.

Dr J V Pitt

I Each agent increments its entry in the vector when it performs a
local event
1 It attaches its entire vector clock as a timestamp to every message
it sends out.
I When it receives a message, it takes the element-wise max of its
vector clock and the timestamp on the incoming message,
increments its entry in the vector by 1 (for the local event), and sets
this value to be its new vector clock.
I One vector is defined as later than another if the value of at least one
entry in the first vector is greater than the corresponding entry in the
second, and no value in the second is greater than the first, i.e. v is later
than u if and only if firstly Vi.0<=i<=n: ui <= vi and secondly 3i.0<=i<=n: ui <
vi. We write v4u if v is later than u.

(b)

Message Sequence Chart
bl b2

Auctioneer
<0,0,0>
<1,0,0>

<2,0,0>

<3,2,0>
<4,.2,0>
<5,2,0>

announce)

Artificial Intelligence

<0,0,0>

1]

A
[(o]
N
S
'
I
5
5
(]
2
'Co
Ny
A
v
Ay
@®
>
~
v

l timer (reset after each
completed multicast

<1,1,0>

<1,2,05" ™
noun
Ce
<',>

|<4,3,0>
-anno
qoi2: aceept <2022 %
<6,2,2>

A
s acceF“ <5,2, >
<7,2,4>

<0,0,0>

<2,0,1>

<2,0,2>

<5,2,3>
<5,2,4>

<9,2,5>
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Problems
Auctioneer does not know which bids are in response to which announces
Bidders do not know which announces are in response to their bids

Rules for resolving message sequences via potential causality, with indication
with reference to MSC
R1  For the auctioneer, if the timestamp on an incoming accept message is later

than the auctioneer’s vector clock after the last accepted bid (the last accept to cause
an announce), then it was caused by the most recent multi-cast announce;

R2  For a bidding agent, if the timestamp on an incoming announce is later than
their vector clock, then the announce was caused by its accept.

ml | 120 » 000 accept is caused by most recent (multi-cast) announce
m2 | 202 not * 320 accept not caused by most recent (multi-cast) announce
m3 | 524 » 320 accept is caused by most recent (broadcast) announce
m4 | 420 » 120 (multi-cast) announce caused by b1’s accept (ml)

m5 | 520 not*> 202 (multi-cast) announce not caused by b2’s accept (m2)
m6 | 824 not * 430 (multi-cast) announce not caused by bl’s accept

m7 | 924 » 524 (multi-cast) announce caused by b2’s accept (m3)

()
Use an agent communication language

Performative plus parameters

Performative includes bid and announce

One parameter is a conversation identifier
Using conversation identifiers:

Requirement here, each side attached unique integer id to message ina
conversation.

Pair of identifiers is enough to uniquely identify a conversation (cf syn and
ack bits in TCP)
Parameterize conversation identifier

with local vector clock timestamp
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