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1) Consider the problem of parametric autoregressive moving average (ARMA)
modelling. Write down the equation of a general AR(p) model. 1]

a) Consider the first order autoregressive (Markov) process.
i) Derive the expression for the autocorrelation function for this process.
3]
ii) Write down and plot the autocorrelation function for an AR(1) process
for the cases when the parameter a = 0.9 and a = —0.9. 3]

iii) What are the variance and spectrum of such a process? What can we
say about the spectrum of an AR(1) process for a negative value of
the parameter a? 3]

iv) Define the partial autocorrelation function and explain how the partial
autocorrelation coeflicients are calculated. Can the values of partial
autocorrelation coefficents suggest the order of the AR model of a
given process? 4]

b) Consider a general moving average (MA) process, MA(q).
i) What is the expression for the variance of this process?

2]

ii) Is the autocorrelation function finite or infinite in duration?

[

iii) Consider the MA(1) process given by
zin] = 0.8w[n — 1] + w(n]

where w denotes the driving white noise sequence. Write down the
expression for the spectrum of this process. Is this process invertibleg?
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2) Consider the problem of least squares (LS) estimation.

a)

Sketch the block diagram of the data model and state the optimisation
problem of the least squares estimation. [4]

Consider an optimisation problem, where measurements {z(n)} are given,
and the task is to find the best finite impulse response (FIR) model to filter
signal {z(n)} to yield desired signal {d(n)}. The output of the filter is given
by y(n) = Zfl:o h(r)z(n —r) = hT(n)x(n), where the output error is given
by e(n) = d(n) — y(n) and {h(n)} are the filter coefficients.

i) Define the deterministic and stochastic error function J (in terms of
the output error e(n). 2]

ii) By using the method of least squares, derive the expression for the
coefficient vector h which minimises the absolute squared error.  [6]

iii) Define the orthogonality condition and explain its geometrical inter-
pretation. 3]

Given a wide sense stationary random process z(n), design a “linear” pre-
dictor that will predict the value z(n + 1) using a linear combination of
z(n) and z(n — 1). Thus the predictor for z(n + 1) is of the form

#(n+1) = azx(n) + bz(n —1)

where a and b are constants. Assume that the process has zero mean
E{z(n)} =0 and that we want to minimise the mean square error

¢ = E{[z(n) -~ £(n)]*}

i) With r,(k) the autocorrelation of z(n), determine the optimum pre-
dictor of z(n) by finding the values of a and b that minimise the mean
square error. (3]

ii) If z(n + 1) is uncorrelated with z(n), what form does the predictor
take? If z(n + 1) is uncorrelated with both z(n) and z(n — 1), what
form does the predictor take? 2]
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3) Consider the problem of maximum likelihood estimation (MLE).

a) State the definition of the likelihood function.

2]

b) Derive the Cramer—-Rao lower bound for the estimation of a DC level in
white Gaussian noise (w(n) € N(0,0?)), given by

zn]=A+wn|, n=01,...,N-1

for which the probability density function is giyen by

Ay = L ex ——i;\;:an— 2
PA) = =2y eop el = 47 .

c¢) Derive the maximum likelihood estimator for the problem from b).

[7]

d) Is the MLE estimator from c) unbiased? Is it efficient? Does such an MLE
estimator attain the Cramer—-Rao lower bound? 3]
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4)

a) State the problem of sequential least squares. 9]

b) Explain the difference between the method of least squares and sequential
least squares.

Co
¢) What are the advantages of using a sequential estimator? 3]
d) A least squares estimator for signal {z} given by
z(n) = A +w(n)
that is, DC level A in white Gaussian noise {w}, is given by
=
AN-1)= NZx(n)
n=0
i) Derive the sequential least squares estimator for this case. [6]

i) Describe each of the terms that comprise the sequential estimator in
i). 2]

iii) Derive the minimum least square error for the estimator in i). 2]
e) Consider a filter given by
1
y(n) = 1 [z(n) + z(n — 1) + z(n — 2) + z(n — 3)]

Can such a filter be used to estimate a DC level in noise? Explain the
difference between this estimator and the sequential least squares estimator?

(3]
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5) Adaptive linear prediction is at the core of adaptive filtering.

a) Sketch the block diagram for the adaptive prediction configuration.

(4]

b) A finite impulse response (FIR) adaptive filter is employed within the adap-
tive prediction configuration. Derive the least mean square (LMS) algo-
rithm for this filter, which minimises the cost function .

[6]

¢) A sign-sign algorithm is used to reduce the computational complexity of the

LMS algorithm. Write down the weight update of the sign-sign algorithm.

What are the benefits and drawbacks of using this algorithm as compared
with LMS?

[4]

d) Let z(n) be a second order autoregressive (AR) process that is generated
according to the difference equation

z(n) = 1.2z(n — 1) — 0.8z(n — 2) + w(n)

where w(n) is unit variance white noise. An adaptive FIR predictor is used
to predict process {z(n)}.

i) Using the result from b) write down the equations for the LMS weight
updates for such an adaptive predictor (A second order adaptive FIR
filter). - 2]

ii) Describe the bound on the step size which ensures the convergence of
such a filter. What effect does the value of the step size have on the
convergence trajectory on the error performance surface? 2]

ili) For the AR process above, what is the minimum mean square error
achievable by using an adaptive FIR predictor?

2l
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Solutions:
1)
zln] = arz[n — 1) + asz[n — 2] + - -+ + ayzln — p] + win|
where ay, ..., a, are the model parameters and {w[n]} is the driving white noise.

a) 1) The first order Markov process is given by
z[n] = azln — 1] + win]
By applying the expectation operator E{-} to
z[n — k)z[n]
we have
plk) =ap(k —1) or plk)=a" k>0
where p(0) = 1 and p(1) = a.

i) The ACF for a = 0.9 is p(k) = (£0.9)*,k > 0. The plots are a decay-
ing function with or without alternating the sign (for a negative a).

iii) For & = 0 the variance becomes

2 2
2 T T

UZ:],*ap(l)_l—aQ

The spectrum of an AR(1) process is given by
202 202 L}]

- |1 —ae=27f|2 " 1 4 a2 — 2acos(27 f)

S(f)
For a negative a this represents a high—pass filter.

iv) Initially we may not know which order of autoregressive process to fit to
an observed time series. This problem is analogous to deciding on the number of
independent, variables to be included in a multiple regression.

The partial autocorrelation function is a device which exploits the fact that
whereas an AR(p) process has an autocorrelation function which is infinite in
extent. it can by its very nature be described in terms of p nonzero functions of
autocorrelations. Denote by ay; the jth coefficient in an autoregressive represen-
tation of order k, so that a is the last coefficient. The ag; satisfy the set of
equations

p(j) =amp(f—D+- +awp(j—k) 7=1,2,...,k

e P-u:lge_ A7y

1]



leading to the Yule-Walker equations. The quantity axx, regarded as a function C #
of lag k is called the partial autocorrelation function. The large values of the _J
partial autocorrelation function may therefore indicate undermodelling.

b) 1) For the MA(q) process
z[n] = biwln — 1]+ - - + byw[n — q] + win] )
the variance is given by

var(MA(q)) = (1 + b7+ + bg) o?

ii) The ACF is finite in duration and has a length q. <0
iii) The spectrum of an MA(q) process is given by
S(f) =205 |1 - bie ™ — ... — bye I |? Cs]
Theferore, for the given MA(1) we have
S(f)=202[1+0.8"—2x%0.8cos(27f)], 0<f<05

The value of b = 0.8 = |b| < 1 satisfies the invertibility condition.
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2) a)

e Signal, s[n] is assumed to be generated by the signal model which is a function

s[n] x[n
fﬂlggéll: PERTURBATION —[b}

L .

NOISE MODEL
INACCURACIES

DATA MODEL

Figure 1: Data model for least squares estimation

of 0

e The observation noise/model inaccuracies perturb s[n] to yield the measurement
xln

e The Least Squares Estimator of # chooses the value that makes s[n] closest to
the observed data z[n], where closeness is measured by the LS error criterion

J0) =Y (aln] - s[n))?

e[n]
LSE: ming J(8)

Note, no probabilistic assumptions have been made about the data z[n]

SIGNAL s[n] ERROR
MODEL = eln]
+
pel x{n]

b)

i) We draw a distinction between stochastic and deterministic measures
(a) Stochastic

J = m&nE{le(n)V’} L)



(b) Deterministic
jm 1 p
J min Z le(n)]
n

With p = 2, Problem (a) is known as the Wiener filtering problem, whereas
Problem(b) is known as the Least Squares problem. These problems are also
analytically easily tractable.

11) The absolute squared error
le(n)[* = |d(n) — h"x|ld(n) — h'x]
o Ce)
le(n)|? = |d(n)]* —g"h — hTg + h'®h

where for the stochastic case

g = B{d(a(n — )}
® = F{x(n—k)z(n—j)} = {Dx;}

while for the deterministic case, we have the same expressions, but expectations
are replaced by summations.

In both cases
g is the crosscorrelation between the data and the desired signal, ® is the auto-
correlation matrix of the data

Differentiating |e(n){? wrt h and setting the result to zero, we obtain
0=g-+ ®h
or
h=—-|®" g

Differentiating again yields the autocorrelation matix, which is positive definite
and hence we have a minimum.

i)
e(n)h” = [d(n) — hTx|x” = d(n)x" — hTxx" C3)
On taking the expectation we obtain

E{e(n)h’} = E{dn)x" —hTxx"} =g - h'® =0

oL aj?SC‘V‘X,ﬁ \"( / 4[\



This is known as the orthogonality condition
at the optimum the error vector is orthogonal to the data

¢) The MSE we want to minimise is
E=E{lastn+ 1) —in+ 1} = E{a®(n+ 1) — 2z(n + Da(n + 1) + 2*(n + 1)}
i) Since the estimate of x(n + 1) is

#(n+1) = az(n) + bx(n — 1)

then setting the derivative of £ wrt a and b equal to zero, we have

% = =2F{z(n+ Dz(n) + E{2&(n + )z(n)}} =0
% 2B{a(n + Datn 1) + {20+ a(n— 1)) =0

Dividing by 2 and substituting for &(n + 1) gives
r.(0) 7.(1) ][ a | (1)
(1) 7r2(0) | [ b ] | ra(0)
Solving for a and b we find )

[ a} _ 1 [ 74 (0)re (1) — 74 (1)7a(2) }
b r20) —r2(1) | r2(0)ro(2) — ri(1)

i)
If w(n) and z(n + 1) are uncorrelated, then r,(1) = 0 and the values for a and b
become

a=10 b=r.(2)/r.(0)

In this case, the linear predictor is

r.(2) B
rm(o)x(n 1)

Similarly, if z(n-+1) is uncorrelated with both z(n) ands z(n—1), then the values
for @ and b are

tn+1) =

a=b=0
and the linear predictor os
Hn+1)=0 c
which is equal to the expected value of xz(n + 1)

#(n+ 1) = Bla(n + 1)}

Lo ;)‘\C'-» ,S‘ 5///‘



3) a) The likelihood function is a probability density function defined in terms
of the unknown parameter to be estimated, that is p(z, 6). 5
Cl

b) The CRLB for A

1 1 9
p(z; 0) = exp ————xn—A}
w8 =[] Zmserp | ~gatetrl =4
1 1 N-1 ,
Taking the first derivative
dln p(z; A) 0 91 N/2 1 — 2
— 54 " 24 —ln [(2m0?]7" - 552 nzo(l[n] —A)
1 N-1
= 5 > (aln] - 4)
n=0
N
= (- 4)
where 7 is the sample mean.
Differentiating again
Plnp(z;A) N
0A? o N
C3)
Therefore Var(A) > ‘—’A; is the CRLB.
¢) DC level in WGN
zin] = A + win] n=0,1,...,N-1
A to be estimated
wln] ~ N(0, 0?) C+)
. N-1
1 2
PDF p(x; A) = ———5exp | — z[n] — A)
( ) (27TO'2)N/2 [ 20° 71:0( " ]
Take the derivative of the log-likelihood function
Olnp(z A) 1 =
e T A [n] — A
91 = ;(1[ |- A4)

SO :(\(;,_,j,;; (



Set the result to zero to yield the MLE

1
N

A:

3
I
>

d) In this case the MLE is clearly the MVU estimator which yields the CRLB,
hience it is efficient.

If an efficient estimator exists the maximum likelihood procedure will produce it.
The MLE has the desirable feature that it yields "an asymptotically efficient”
estimator - namely one, that for sufficiently large datasets, that is unbiased and
it attains the CRLB.

)
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1) a) The problem: Given we know the LSE @ based on {z{0]z[1]...z[N —1]},
and then we observe x[N], can we update 6 (in time) without having to solve the
normal equations? Cl]

) Data can be collected sequentially, namely one point at a time. We can
either wait until all the data points (samples) are collected and make an estimate
of the unknown parameter, namely the block-based approach or least squares, or
refine our estimate in time as each new sample arrives, the sequential approach
or sequen tial least squares. 1)

¢) Such an estimator is computationally much less demanding and can be run
on line.

d) i)
N-1 "
ANV 1) = 3l Lol

3

Il we now observe, z|N], we can rewrite the LSE

AN = S S alnl = 7 (X alal + 2N
— A[N] = NJX A — 1]+ ()

Clearly A[N] can be calculated from A[N — 1] together with the new observation
IH\’V]

C 2]

ii} Equation I) can be rewritten as

R ~ 1 -

AN] =AIN -1 +—— z|N] — AN -1

N = AN = 1) ] = AW - 1 )
New estimate Old estimate correction term - error in prediction x{n] by the previous sample
iii) The minimum LS error may also be computed recursively
N . -
Jmin V] = Juir N -1 N} - AN -1 2
INT = N = 1]+ o (alN] ~ AN 1) (29

¢) This filter is a moving average filter, working on only four signal samples at a
time. It is fast to estimate the unknown parameter value but is more prone to
noise since it is not adaptive and is very short.

In fact it is a low pass filter, with

_1—2‘4 ng

1 — 2zt

H(z)




which filters out the low pass component of the additive WGN.
Therefore, both the least squares and sequential least squares provide a bet-

ter estimate of a DC level in WGN and they are asymptotically unbiased and
consistent.
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5H) a)

4

, ] .
x(k) Delay L B J Adaf)tlve oyl
’ Filter

/ e(k) A

a0 C4)

Figure 2: Adaptive prediction configuration

) The cost function for the LMS algorithm is given by

which is based on the instantaneous output error e(k) = d(k) —y(k). The instan-
taneous gradient is
0J(k)

w(k) e(k)

Be(k)
Bw (k)

Following a general gradient descent procedure algorithm

de(k)
ow(k)

= —x(k)

and
0J(k)
—= = —e(k)x(k
ey =~ ekx(®
The set of equations that describes the LMS algorithm is then given by

N

y(k) Z wi(kywi(k) = x" (k)w(k) Cu)

e(k) = d(h) — y(k)
w(k+1) = w(k)+ne(k)x(k)

¢) The sign-sign algorithm combines the sign--error and sign-regressor algorithms,
and is given by

w(n + 1) = w(n) + nsign(e(n))sign(x(n))



It is very convenient to implement in hardware, especially if the step size is cho-
sen to be a multiple of 2. In that case it is extremely fast. The drawback is an
increased mean square error as compared to LMS. CH]

d) 1)

wi(n+1) = wy(n) + pe(n)z(n — 1)

wy(n + 1) = wa(n) + pe(n)x(n — 2) ,
C)

where p is the learning rate.

i) The step size of the LMS is bounded by the reciprocal of the maximum eigen-
value of the input autoccorelation matrix. In this case, r(0) = 5.7523,75(1) =
1.0450 (not expected to calculate in the exam). The step size bounds now become

0 0.204 ‘
e C2)

iii) The minimum mean square error for this example is
2
émin =0y = 1
Namely alter the filter coefficients converge to the true values of the AR param-

eters, there is still the “unpredictable” part due to the error term in the AR
model, which in this case has unit variance. r T’]
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