IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2000

EEE/ISE PART III/V: M.Eng., B.Eng. and ACGI

DIGITAL SIGNAL PROCESSING

Monday, May 15 2000, 10:00 am

There are SLX questions on this paper.
Answer FOUR questions.
All questions carry equal marks.

Corrected Copy
 Q2(a), Q2(c)

Time allowed: 3:00 hours

Examiners: Dr P.A. Naylor, Prof A.G. Constantinides

DIGITAL SIGNAL PROCESSING

 2000
Special Instructions for Invigilators: None

Information for Candidates:

Sequence	z-transform
$\delta(n)$	1
$u(n)$	$\frac{1}{1-z^{-1}}$
$a^{n} u(n)$	$\frac{1}{1-a z^{-1}}$

Table 1 : z-transform pairs
$\delta(n)$ is defined to be the unit impulse function. $u(n)$ is defined to be the unit step function.

Numbers in square brackets against the right margin of the following pages are a guide to the marking scheme.

1. Goertzel's algorithm is a recursive method for computing the DFT of a sequence. The algorithm can be derived by first considering the formula

$$
X(k)=\sum_{l=0}^{N-1} x(l) W_{N}^{-k(N-l)}
$$

Show that this is equivalent to the standard formula for the DFT.
By considering a new sequence

$$
y_{k}(n)=\sum_{l=0}^{n} x_{e}(l) W_{N}^{-k(n-l)}
$$

with

$$
x_{e}(n)=\left\{\begin{array}{l}
x(n), \quad 0 \leq n \leq N-1 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

and

$$
X(k)=\left.y_{k}(n)\right|_{n=N}
$$

write down the z-transform of $y_{k}(n)$ and the difference equation for $y_{k}(n)$ and hence draw the corresponding signal flow graph for $y_{k}(n)$.

Deduce and briefly describe the operation of Goertzel's algorithm with reference to these formulae and signal flow graph. Include in your description a clear explanation of the procedure for computing $X(k)$ from $x(n)$.
2. Consider a sequence $g(n)$ and its z-transform $G(z)$.
(a) Show that the z-transform of $n g(n)=-z \frac{d G(z)}{d z}$.
(b) Derive $G(z)$ when $g(n)=r^{n} \cdot \cos \left(\omega_{0} n\right) \cdot u(n)$.
(c) Consider two sequences $x(n)$ and $y(n)$ with z-transforms $X(z)$ and $Y(z)$. Let $w(n)$ be defined as the convolution of $x(n)$ with $y(n)$. The z-transform of $w(n)$ is $W(z)$.

Starting from the convolution sum, derive an expression for $W(z)$ and comment on the region of convergence of $W(z)$.

Let $y(n)=a^{n} u(n)$ and let $x(n)=u(n)$. Find $W(z)$ and state its region of convergence. Sketch a pole/zero diagram of $W(z)$ and indicate the region of convergence on the diagram. You may assume a is real and $0<a<1$.
3. Consider a discrete-time signal $x(n)$ of length N and its DFT $X(k)$.
(a) The DFT operation can be expressed in the following matrix form.

$$
\mathbf{X}=\mathbf{D}_{N} \mathbf{x}
$$

where \mathbf{X} and \mathbf{x} are vectors and \mathbf{D}_{N} is known as the DFT matrix. Write out in full the vectors \mathbf{X} and \mathbf{x} and the DFT matrix, \mathbf{D}_{N}, showing their elements in terms of $x(n), X(k)$ and the term $W_{N}=e^{-j 2 \pi / N}$.
(b) When $x(n)$ is complex it can be written

$$
x(n)=g(n)+j h(n)
$$

Show that

$$
\begin{aligned}
& G(k)=\frac{1}{2}\left(X(k)_{N}+X^{*}(-k)_{N}\right) \quad \text { and } \\
& H(k)=\frac{1}{2 j}\left(X(k)_{N}-X^{*}(-k)_{N}\right)
\end{aligned}
$$

where $G(k)$ is the DFT of $g(n), H(k)$ is the DFT of $h(n), X^{*}$ is the complex conjugate of X and the subscript N indicates modulo N indexing.
(c) Now consider a real discrete-time signal $y(n)$. Using the formulae of (b), or otherwise, develop an efficient scheme for computing $Y(k)$, the DFT of $y(n)$.
[Hint: consider $y(n)=y(2 n)+y(2 n+1)$ to be of length $2 N$ and aim to compute $Y(k)$ from the sum of two N-point DFTs.]
4. (a) Compare FIR and IIR filters stating the advantages and disadvantages of each. Your answer should include definitions of both types of filters.
(b) Consider an FIR discrete-time system with impulse response

$$
\{h(n)\}=\{1,1,1,1,1,1\}
$$

Write down the difference equation and transfer function of this filter.
Develop a recursive form of this difference equation and, hence, write down the transfer function of the recursive filter. Comment on the result.

Draw a labelled sketch of the magnitude and phase of the frequency response of this filter.
5. (a) In practical applications the derivative of a sequence is often approximated using sample difference equations.

Construct and write down such difference equations and their z-transforms for
(i) the first derivative, $y_{1}(n)$, of a signal $x(n)$,
(ii) the second derivative, $y_{2}(n)$, of a signal $x(n)$.

For each of (i) and (ii) state whether the systems are linear, time-invariant and/or causal.
(b) One of the most common applications of median filtering is to smooth signals which have been corrupted by additive impulsive noise.

The output, $y(n)$, of a median filter is given by
$y(n)=\operatorname{med}(x(n-k), \ldots, x(n-1), x(n), x(n+1), \ldots, x(n+k))$
where the median function, $\operatorname{med}()$, lists the $2 K+1$ samples in descending order and selects the value in the middle of the list, where K is an integer.

Comment on whether the above median filter is linear and/or time-invariant. Justify your comments analytically and construct a simple relevant example to illustrate your conclusions using the two sequences below.

$$
A=[-1,7,3,0,-5] \quad B=[-10,2,-11,-12,1]
$$

(c) Consider the digital signal processing system shown in Figure 1. Determine the output, $y(n)$, in terms of the input, $x(n)$, and hence find the system function.

Figure 1
6. (a) Construct a signal flow diagram of a direct implementation of a multirate DSP system containing a two-band analysis filterbank followed by a synthesis filterbank. Label the diagram fully and write down expressions for suitable filterbank filters in terms of a half-band lowpass prototype filter $H_{0}(z)$.

Show how polyphase filterbanks can be used to reduce computational complexity using appropriate diagrams and supporting analysis.
(b) A signal $x(n)$ has a spectrum as shown in Figure 2. The signals, $p(n)$ and $q(n)$, are generated from $x(n)$ using the system of Figure 3. Draw labelled sketches of $\left|P\left(e^{j \omega}\right)\right|$ and $\left|Q\left(e^{j \omega}\right)\right|$ given that

$$
H\left(e^{j \omega}\right)=\left\{\begin{array}{l}
1 \text { for }|\omega|<\frac{\pi}{2} \tag{7}\\
0 \text { for } \frac{\pi}{2} \leq|\omega| \leq \pi
\end{array} .\right.
$$

Describe briefly the relationship between $\left|Q\left(e^{j \omega}\right)\right|$ and $\left|X\left(e^{j \omega}\right)\right|$.

Figure 2

Figure 3

MASTER IJE3.1
(1)

$$
\text { (1) } \quad \begin{aligned}
x(k) & =\sum_{l=0}^{N-1} x(l) W_{N}^{-k(N-l)} \\
& =W_{N}^{-k N} \sum_{l=0}^{N-1} x(l) W_{N}^{k l} \\
& =\sum_{l=0}^{N-1} x(l) e^{-j 2 \bar{n} l k} \frac{N}{N}
\end{aligned}
$$

since $W_{N}=e^{-j 2 \pi / N} \quad a n d$

$$
W_{N}^{-k N}=e^{-j 2 \bar{n} k}=1
$$

$$
y_{k}(n)=\sum_{l=0}^{n} x_{e}(l) W_{N}^{-k(n-l)}
$$

Note that thas is the convorhtion of ten sequence $x_{e}(l)$ with a sequence $h_{k}(n)$ Shere

$$
h_{k}(n)= \begin{cases}W_{N}^{-k n} & n \geqslant 0 \\ 0 & \text { otherrize }\end{cases}
$$

with $H_{k}(z)=1+W_{N}^{k} z^{-1}+W_{N}^{2 k} z^{-2}+\cdots$

$$
=\frac{1}{1-W_{N}^{-k} z^{-1}}
$$

Hence $\frac{y}{k}(z)=x_{e}(z) H_{k}(z)$

$$
=\frac{x_{e}(z)}{1-w_{N}^{-k} z^{-1}}
$$

and

$$
y_{k}(n)=x_{e}(n)+W_{N}^{-k} y_{k}(n-1)
$$

$$
x_{2}(n)
$$

(2)

$$
\begin{aligned}
& \text { (a) } h(z)=g_{0}+g_{1} z^{-1}+g_{2} z^{-2}+\cdots \frac{3}{14} \\
& \therefore \frac{d G(z)}{d z}=-g_{1} z^{-2}-2 g_{2} z^{-3}+\cdots \\
& \therefore-z \frac{d G(z)}{d z}=g_{1} z^{-1}+2 g_{2} z^{-2}+\cdots=n g(n) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
g(n) & =r^{n} \cdot \cos \omega_{0} n \cdot u(n) \\
& =\frac{r^{n}}{2}\left(e^{j \omega_{0} n}+e^{-j \omega_{0} n}\right) n(n) \\
& =\underbrace{\frac{1}{2} r^{n} e^{j \omega_{0} n} u(n)}_{a(n)}+\underbrace{\frac{1}{2} r^{n} e^{-j \omega_{0} n} u(n)}_{b(n)}
\end{aligned}
$$

z-trams from of $a(n)$:

$$
\begin{aligned}
& A(z)=Z\left\{\frac{1}{2} \alpha^{n} n(n)\right\} \text { write } \alpha=r \cdot e^{j \omega_{0}} \\
&=\frac{1}{2} \frac{1}{1-\alpha z^{-1}}=\frac{1}{2} \frac{1}{1-r e^{j \omega_{0}} z^{-1}} ;|z|>r \\
& \text { Similady } B(z)=\frac{1}{2} \frac{1}{1-r e^{-j \omega_{0}} z^{-1}},|z|>r \\
& \therefore Y(z)=A(z)+B(z)=\frac{1-\left(r \cos \omega_{0}\right) z^{-1}}{1-\left(2 r \cos \omega_{0}\right) z^{-1}+r^{2} z^{-2}}|z|>r
\end{aligned}
$$

c)

$$
\begin{aligned}
& \omega(n)=\sum_{k=-\infty}^{\infty} x(k) y(n-k) \\
& \omega(z)=\sum_{k=-\infty}^{\infty} x(k) \sum_{n=-\infty}^{\infty} y(n-k) z^{-n}
\end{aligned}
$$

Let $m=n=k$:

$$
\begin{aligned}
w(z) & =\sum_{k=-\infty}^{\infty} x(k) \sum_{m=-\infty}^{\infty} y(n) z^{-m} \cdot z^{-k} \\
& =x(z) y(z)
\end{aligned}
$$

$R O C$ of $W(z)$ is intersection of ROC for $X(z)+Y(z)$

$$
\begin{aligned}
& Y(z)=\frac{1}{1-a z^{-1}}|z|>|a| \\
& X(z)=\frac{1}{1-z^{-1}} \quad|z|>1 \\
& \omega(z)=\frac{z^{2}}{(z-a)(z-1)} \quad|z|>1 .
\end{aligned}
$$

$$
\left.\begin{array}{rl}
(3) \bar{x} & =\left[\begin{array}{llll}
x(0) & x(1) & \cdots & x(N-1)
\end{array}\right]^{\top} \\
\bar{X} & =\left[\begin{array}{llll}
X(0) & X(1) & \cdots & X(N-1)
\end{array}\right]^{\top} \\
\bar{D}_{N} & =\left[\begin{array}{cccc}
1 & 1 & 1 & \cdots \\
1 & W_{N} & W_{N}^{2} & W_{N}^{N-1} \\
1 & W_{N}^{2} & W_{N}^{4} & W_{N}^{2(N-1)} \\
\vdots & \vdots & \vdots & \vdots \\
1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots
\end{array} W_{N}^{(N-1)(N-1)}\right.
\end{array}\right] .
$$

b)

$$
\begin{aligned}
x(n) & =g(n)+j h(n) \\
X(k) & =\sum_{n=0}^{N-1}(g(n)+j h(n)) e^{-j 2 \pi k n / N} \\
X^{*}(k) & =\sum_{n=0}^{N-1}(g(n)-j h(n)) e^{j 2 \pi k n / N} \\
X^{*}(-k) & =\sum_{n=0}^{N-1}(g(n)-j h(n)) e^{-j 2 \pi k n / N} \\
\frac{1}{2}(X(k) & \left.+X^{*}(-k)\right)
\end{aligned}=\frac{1}{2}\left(\sum_{n} g(n) W_{N}^{k n}+j \sum_{n} h(n) W_{N}^{k n}\right)
$$

Simelerly for $H(k)$
c)

$$
\begin{aligned}
& y(n)=y(2 n)+y(2 n+1) \\
& \text { - Lengen 2N. } \\
& y(k)=\sum_{n=0}^{2 N-1} g(n) w_{2 N}^{k n} \text { by difintion. } \\
& =\sum_{n=0}^{N-1} y(2 n) w_{2 N}^{2 k n}+\sum_{n=0}^{n-1} y(2 n+1) W_{2 N}^{(2 n+1) k} \\
& \text { Using } W_{2 N}^{2 k n}=e^{-j 2 \pi / 2 N^{2 k n}}=e^{-j 2 \pi / 1 k n}=W_{N}^{k n} \text { we hare } \\
& y(k)=\sum_{n=0}^{N-1} y(2 n) W_{N}^{k n}+\sum_{n=1}^{N-1} y(2 n+1) w_{N}^{k n} \cdot W_{2 N}^{k}
\end{aligned}
$$

$2 N$-point DFT
of real sequence

N-perint DFT y earen samplom

Define two new segreences as

$$
\begin{aligned}
& g(n)=y(2 n) \text { with DFT } G(k) \\
& h(n)=y(2 n+1) \text { with DET } H(k)
\end{aligned}
$$

$G(k)$ and $H(k)$ can be fonnd from the Npoint Df $\mathrm{D}^{\prime} \quad x(a)=g(n)+j h(n)$ ming the formanies of D)
fimatho $y(k)=C(k)+b_{2 N}^{k} H(k)$

$$
\text { for } k=0,1, \ldots, 2 N-1
$$

(4) a) Bookwork.
b)

$$
\begin{aligned}
& h(n)=[1,1,1,1,1,1] \\
& H(z)=\frac{y(z)}{x(z)}=1+z^{-1}+z^{2}+z^{-3}+z^{-6}+z^{5} \\
& y(n)=x(n)+x(n-1)+x(n-2)+x(n-3) \\
& +x(n-4)+x(n-5)
\end{aligned}
$$

For a recursive form, we write the ${ }^{\text {a }}$

$$
y(n-1)=x(n-1)+x(n-2)+\cdots+x(n-6)
$$

from whish we see that

$$
y(n)=x(n)+y(n-1)-x(n-6)
$$

The equivalent lie transfer function is therefore given by

$$
\begin{aligned}
& Y(z)=X(z)+X(z) z^{-1}-X(z) z^{-6} \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{1-z^{-1}}{1-z^{-1}}
\end{aligned}
$$

ϕ

a)
(i) $y_{1}(n)=x(n) \cdots x(n-1) \quad \frac{y(z)}{x(z)}=1-z^{-1}$

LTI amed comsal
(ii)

$$
\begin{aligned}
y_{2}(n) & =y_{1}(n)-y_{1}(n-1) \\
& =x(n) \cdot x(n-1)-x(n-1)+x(n-2) \\
& =x(n)-2 x(n-1)+x(n-2)
\end{aligned}
$$

LTI amp caresal
Altemativety:

$$
y_{2}(n)=x(n+1)-2 x(n)+x(n-1)
$$

LT1 and mon-cawres
b) Example:

$$
\begin{array}{llll}
A=\left[\begin{array}{ccccc}
-1 & 7 & 3 & 0 & -5
\end{array}\right] & \operatorname{med}(A)=0 \\
B=\left[\begin{array}{llll}
-10 & 2 & -11 & -12
\end{array}, 1\right] & \operatorname{med}(B)=-10 \\
\operatorname{med}(A+B)=\operatorname{med}\left(\left[\begin{array}{lllll}
-4 & 9 & -0 & -12 & -4
\end{array}\right]\right)=-8 \\
\operatorname{med}(A)+\operatorname{med}(B) &
\end{array}
$$

Trom whicl we vee thet the mex an folter doen ast oby the painciplef seyueperction

We conld arite $H(z)=\sum V(n) z^{-n}$

$$
w+l z\{v(n)\}=z^{-m / n)},
$$

Wrud is a filter, the mpinta repaone it anadis a sigule umit umpatest a sheloy of $m(n)$ samples. The de by $m(n)$ is determined by the raedian opacratro.... This fomulaton thorstraten a eimerayry chacacterrat y metias fterigy:
c)

$$
\begin{align*}
v(n) & =x(n)-n(n-1) \tag{1}\\
n(n) & =x(n)+d_{1} v(n) \tag{2}\\
y(n) & =d_{1} v(n)+n(n-1) \tag{3}\\
& =d_{1} x(n)+\left(1-d_{1}\right) n(n-1)
\end{align*}
$$

from (2) and (3) we have $n(n)=x(n)+y(n)-n(n-1)$ aran hence

$$
\begin{aligned}
& \frac{y(n+1)-d_{1} x(n+1)}{1-d_{1}}=x(n)+y(n)-\frac{y(n)-d_{1} x(n)}{1-d_{1}} \\
& \text { giving } \begin{aligned}
y(n) & =d_{1} x(n)+\left(1-d_{1}\right) x(n-1)+\left(1-d_{1}\right) y(n-1)-y(n-1) \\
& +d_{1} x(n-1) \\
& =d_{1} x(n)+x(n-1)-d_{1} y(n-1)
\end{aligned}
\end{aligned}
$$

giving $\frac{y(z)}{x(z)}=\frac{d_{1}+z^{-1}}{1+d_{1} z^{-1}}$

- (6) a)

For amp fitters, choose $H_{1}(z)=H_{6}(-z)$
For alias cancellation: $C_{0}(z)=H,(-z)$

$$
S_{1}(z)=-H_{0}(-z) .
$$

For efficient polyphase implementation write

$$
\begin{aligned}
& H_{0}(z)=E_{0}\left(z^{2}\right)+z^{-1} E_{1}\left(z^{2}\right) \\
& x(n) \longrightarrow E_{0}(z) \\
& z^{-1} \longrightarrow E_{1} z^{2} \quad,
\end{aligned}
$$

then employ the Noble Idem tities to charger the order of the filtering and the decimation, thereby petpoming the firing at the lower sampling rate.

Note that $H_{0}(z)$ and $H_{1}(z)$ can both be often from a single set of fitters $E_{0}(z)$ and $\epsilon_{0}(z)$ by taking sum and olifterence respective

Hence
Analynis Bank

Simila,b for the ryntheris bew

$\left|Q\left(e^{j \omega}\right)\right|$ is identical to $\left.\mid X\left(e^{j 0}\right)\right)$ over the ra cg of frequencies from $2 k \pi-\pi / 4<\omega<2 k \pi+\pi / 4$ Outside this range we see periodic repetitions of the boer frequency y band.

