

Special Information for Invigilators: none.

Information for Candidates

VHDL language reference and course notes can be found in the booklet VHDL Exam Notes.

Unless otherwise specified assume VHDL 1993 compiler.

Library functions from the VHDL package utility_pack from the coursework may be used freely
in your implementations.

VHDL & Logic Synthesis page 1 of 9

The Questions
Question 1 is COMPULSORY

1. a)

(i) Determine the precise behaviours of processes P1 & P2 in Figure 1.1,
assuming that z is initially ‘0’. Is P1 synthesisable?

(ii) You may assume that synthesis of a VHDL process depends only on its
precise behaviour in simulation. State, giving reasons, whether P2 is
synthesisable?

 [4]

b) Figure 1.2 shows a random access memory entity ram with data output dout and
control input write, address input addr and data input din. In ram what is the
width of one memory location and the number of memory locations? Write a
synthesisable architecture for entity ram implementing the function shown in
Figure 1.2.

 [4]

c) Calculate the ROBDD for the Boolean expression:

 X xor Y xor Z xor W

 with variable order X, Y, Z, W

 [4]

d) You may assume that a, b, c, d in Figure 1.3 are all ‘0’ at the start of simulation.
Draw the first 20ns of the waveforms on these signals when driven by process
P3, annotating each signal transition with its physical time and indicating the
simulation Δ of the transition if this is not 0.

 [4]

e) Entity iobuff in Figure 1.4 has ports za, zb which are both inputs and (tri-state)
clocked outputs. Its behaviour is described in Figure 1.5 where the notation xi
denotes the value on signal x during clock cycle i. Write an architecture for iobuff
consistent with Figure 1.5.

 [4]

VHDL & Logic Synthesis page 2 of 9

P1:PROCESS
BEGIN
 WAIT UNTIL clk'EVENT;
 z <= not z;
END PROCESS P1;

P2:PROCESS
BEGIN
 WAIT UNTIL clk'EVENT;
 IF clk='1' THEN
 z <= not z;
 END IF;
END PROCESS P2;

Figure 1.1

ENTITY ram IS
PORT(
 write, clk: IN std_logic;
 addr: IN std_logic_vector(3 DOWNTO 0);
 din: IN std_logic_vector(7 DOWNTO 0);
 dout: OUT std_logic_vector(7 DOWNTO 0)
);
END ram;

write Operation on next clock positive edge Dout in current cycle
1 ramloc[addr] := din ramloc[addr]
0 n/a ramloc[addr]

Figure 1.2

 P3:PROCESS
 VARIABLE xv : std_logic;
 BEGIN
 WAIT FOR 10 ns;
 xv := a;
 a <= not xv;
 b <= not a;
 WAIT FOR 0 ns;
 c <= b;
 d <= b AFTER 5 ns;
 END PROCESS P3;

Figure 1.3

ENTITY iobuff IS
 PORT(dir,clk:IN std_logic;
 za,zb:INOUT std_logic
);
END iobuff;

Figure 1.4

dirn zan zbn
1 zbn-1 High

impedance
0 High

impedance
zan-1

Figure 1.5

VHDL & Logic Synthesis page 3 of 9

 Students must answer TWO out of Questions 2-4.

2. Figure 2.2 shows an implementation of entity transpose in Figure 2.1. This uses a 16
word RAM tram to implement 4X4 matrix transposition. The circuit is synchronous with
the negative edge of clk. The operation is initiated by a '1' on reset and controlled by
finite state machine fsm with three states as in Figure 2.3. Note that the double vertical
lines indicate where clock cycles have been omitted.

 During state1, the16 matrix elements each of width 16 bits are input sequentially on din
in row order and written to the RAM. In state2 the 16 matrix elements are output in
column order. As this happens all 16 elements are summed in block alureg. In state3,
lasting 1 cycle, the sum is output. The address inputs of tram are driven by a block amux
which permutes address inputs in state 2 to implement the transposed element order.
Block muxd selects the appropriate signal for dout.

a) Write appropriate VHDL to define type word as a 16 bit vector which can be
used in entities instantiating transpose as well as the entity and architecture of
transpose and tram.

 [3]

b) The RAM tram is implemented as a separate entity. Write an appropriate entity
declaration for tram. You do not need to write an architecture for tram.

 [2]

c) Write an architecture for transpose which instantiates tram and implements
blocks amux, muxd, fsm, alureg, and count.

 [15]

VHDL & Logic Synthesis page 4 of 9

ENTITY transpose IS
 PORT (
 clk, reset : IN STD_LOGIC;
 datain : IN word;
 dataout : OUT word
);
END transpose;

Figure 2.1

din dout
tram

alureg
din dout

en

amux

muxd

fsm

count

din

15:0

3:0

3:0

15:0

15:0

15:0

15:0

reset15:0

dout

dsel
clk

addr
write

asel

reset (not shown) controls
alureg, count, fsm

Figure 2.2

Figure 2.3

state state1 state2

addr
rsel

state3

reset

state1

count 0 1 2 3 14 15 0 1 2 3 14 15 0

0 1 2 3 4 13 14 15 0 4 8 12 1 7 11 15

state2:
add

state3:
addr n/a

r = count(3:2)+count(1:0)*4
state1:

addr = count

VHDL & Logic Synthesis page 5 of 9

3. Figure 3.1 illustrates a hardware engine to compute the Mandelbrot fractals which
implements repeatedly two complex number iterations each of the form:

z′r := round{(zr*zr - zi*zi)*2-n}+ cr

z′i := round{2zi*zr*2-n} + ci

 (3.1)

 where zi, ci, zr, cr are two’s complement m-bit signed integers representing imaginary and
real parts of (fixed point) complex numbers z and c respectively, and z′ is the new value
of z. The function round implements rounding to the nearest signed integer.

a) A fixed-point signed vector x(m-1:0) with n fractional bits (n < m) may be
rounded to the nearest fixed-point integer by adding bit x(n-1) onto x at bit index
n, and setting the bottom n bits to 0. Write a VHDL function:

 FUNCTION roundn(n: INTEGER; x: SIGNED) RETURN SIGNED;

 which rounds a signed fixed point vector x to the nearest integer.

 [4]

b) Figure 3.1 shows hardware to implement Equation (3.1). The multiplier blocks
compute products zi*zi, zi*zr, zr*zr, which are held in REG1. The block COUNT is
a one bit counter. Block ASR computes the new values z′i, z′r from these products
and the complex constant c, which is output from multiplexer MUX. Supposing
complex inputs ca and cb are constant, determine the output of REG2 for the first
four clock cycles after reset. Hence explain how the circuit computes Equation
(3.1).

 [4]

c) Define a VHDL type complex which implements a complex number as an array
of two signed vectors, each of length m, where m is a constant.

 [2]

d) You may assume that the VHDL operator :
 * : signed × signed → signed
 synthesises signed multipliers. The length of the result is the sum of the lengths

of the two operands. Using the * operator and previous answers from this
question write a VHDL architecture for the entity in Figure 3.2 which
implements Figure 3.1.

 [10]

VHDL & Logic Synthesis page 6 of 9

ca

zr

×

REG1

ASR

REG2
cb

z

zi zi zi zr zr

× ×

zr zi

COUNT

clk

reset
‘1’ sets COUNT, REG1, REG2 to 0

1

0
MUX
sel

casel

Figure 3.1

ENTITY mandelbrot IS
 GENERIC(n : INTEGER); -- precision
 PORT(
 ca, cb : IN complex;
 z : OUT complex;
 reset, clk: IN std_logic;
 casel: OUT std_logic -- '1' when ca is selected
);
END mandelbrot;

Figure 3.2

VHDL & Logic Synthesis page 7 of 9

4.

(a) Explain how in VHDL constant expressions are synthesised differently from
signals whose value may change:

(i) as indexes of arrays

(ii) as operands of logical operators.

 Specify three distinct contexts in which VHDL identifiers can represent constant
expressions.

 [4]

(b) Figure 4.1 shows VHDL entity and architecture permute which has k bit input a
and output b. Precisely what hardware will this synthesise if

(i) k = 2, m = 1

(ii) k = 4, m = 2

 [2]

(c) Entity switch in Figure 4.3 uses multiple permute blocks all with k=2, m=1. It
connects 2n inputs a to 2n outputs b and is made up of n layers labelled 0 to n-1
each containing 2n-1 copies of permute with identical p input as illustrated in
Figure 4.2, where the dots indicate repeated blocks which have been omitted.
Between layers q and q+1 there is an array of 2n signals x(q). You are given
synthesisable functions x0(q,i) and x1(q,i) which determine the
connections of the permute blocks. In layer q, the ith copy of permute (i =
0,…,2n-1) is connected as in Figure 4.4.

 Using one or more FOR GENERATE loops, complete architecture synth in
Figure 4.3 using synthesisable code. [14]

 index 0 index 1

xin x(q)(x0(q,i)) x(q)(x1(q,i))

xout x(q+1)(x0(q,i)) x(q+1)(x1(q,i))

Figure 4.4

VHDL & Logic Synthesis page 8 of 9

ENTITY permute IS
GENERIC(k,m:INTEGER);
PORT (
 p : IN std_logic_vector(m-1 DOWNTO 0);
 xin : IN std_logic_vector(k-1 DOWNTO 0);
 xout : OUT std_logic_vector(k-1 DOWNTO 0)
);
END permute;

ARCHITECTURE behave OF permute IS
BEGIN
 G1: FOR i IN k DOWNTO 1 GENERATE
 xout(i-1) <= xin((i*(conv_integer(unsigned((p)))+1) mod k+1)-1);
 END GENERATE G1;
END behave;

Figure 4.1

x(1) x(2) x(n-1) x(3)

ba

sel sel(0) sel(1) sel(2) sel(n-1)

x(n) x(0)

…
.. .

.. .
. . .

…

. . .

xin xout p
xin xout p

xin xout
 p

xin xout p

xin xout p

xin xout p
xin xout p

xin xout p
xin xout

 p

xin xout
 p

xin xout p
xin xout p

Figure 4.2

ENTITY switch IS
 GENERIC(n: INTEGER);
 PORT(a: IN std_logic_vector(2**n-1 DOWNTO 0);
 b: OUT std_logic_vector(2**n-1 DOWNTO 0);
 sel: IN std_logic_vector(n-1 DOWNT0 0));
END switch;

ARCHITECTURE synth OF switch IS
 TYPE grid IS ARRAY (0 TO n+1) OF std_logic_vector(2**n-1 DOWNTO 0);
 SIGNAL x: grid;
BEGIN
END synth;

Figure 4.3

VHDL & Logic Synthesis page 9 of 9

