
 

Special Information for Invigilators:    none. 

 

 

Information for Candidates 

 

VHDL language reference and course notes can be found in the booklet VHDL Exam Notes. 

 

Unless otherwise specified assume VHDL 1993 compiler. 

 

Library functions from the VHDL package utility_pack from the coursework may be used freely 
in your implementations. 
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The Questions 
Question 1 is COMPULSORY 

 

1. a)  

(i) Determine the precise behaviours of processes P1 & P2 in Figure 1.1, 
assuming that z is initially ‘0’.  Is P1 synthesisable? 

(ii) You may assume that synthesis of a VHDL process depends only on its 
precise behaviour in simulation. State, giving reasons, whether P2 is 
synthesisable? 

  [4] 

 

b) Figure 1.2 shows a random access memory entity ram with data output dout and 
control input write,  address input addr and data input din. In ram what is the 
width of one memory location and the number of memory locations? Write a 
synthesisable architecture for entity ram implementing the function shown in 
Figure 1.2. 

  [4] 

 

c) Calculate the ROBDD for the Boolean expression: 

 X xor Y xor Z xor W 

 with variable order X, Y, Z, W 

  [4] 

 

d) You may assume that a, b, c, d in Figure 1.3 are all ‘0’ at the start of simulation. 
Draw the first 20ns of the waveforms on these signals when driven by process 
P3, annotating each signal transition with its physical time and indicating the 
simulation Δ of the transition if this is not 0. 

 [4] 

 

e) Entity iobuff  in Figure 1.4 has ports za, zb  which are both inputs and (tri-state) 
clocked outputs. Its behaviour is described in Figure 1.5 where the notation xi 
denotes the value on signal x during clock cycle i. Write an architecture for iobuff 
consistent with Figure 1.5. 

  [4] 
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P1:PROCESS 
BEGIN 
  WAIT UNTIL clk'EVENT; 
  z <= not z; 
END PROCESS P1; 
 

P2:PROCESS 
BEGIN 
  WAIT UNTIL clk'EVENT; 
  IF clk='1' THEN  
    z <= not z;  
  END IF; 
END PROCESS P2;

Figure 1.1 

 

 
ENTITY ram IS 
PORT( 
 write, clk: IN std_logic; 
 addr: IN std_logic_vector(3 DOWNTO 0); 
 din: IN std_logic_vector(7 DOWNTO 0); 
 dout: OUT std_logic_vector(7 DOWNTO 0) 
); 
END ram; 
 

write Operation on next clock positive edge Dout in current cycle 
1 ramloc[addr] := din ramloc[addr] 
0 n/a ramloc[addr] 

Figure 1.2 

 

 
  P3:PROCESS 
    VARIABLE xv : std_logic; 
  BEGIN 
    WAIT FOR 10 ns; 
    xv := a; 
    a <= not xv; 
    b <= not a; 
    WAIT FOR 0 ns; 
    c <= b;  
    d <= b AFTER 5 ns; 
  END PROCESS P3; 

Figure 1.3 

 
ENTITY iobuff IS 
  PORT(dir,clk:IN std_logic; 
 za,zb:INOUT std_logic 
); 
END iobuff; 
 

Figure 1.4 
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Figure 1.5 

VHDL & Logic Synthesis page 3 of 9 



 Students must answer TWO out of Questions 2-4. 

2.  Figure 2.2 shows an implementation of entity transpose in Figure 2.1. This uses a 16 
word RAM tram to implement 4X4 matrix transposition. The circuit is synchronous with 
the negative edge of clk. The operation is initiated by a '1' on reset  and controlled by 
finite state machine fsm with three states as in Figure 2.3. Note that the double vertical 
lines indicate where clock cycles have been omitted. 

 During state1, the16 matrix elements each of width 16 bits are input sequentially on din 
in row order and written to the RAM. In state2 the 16 matrix elements are output in 
column order. As this happens all 16 elements are summed in block alureg. In state3, 
lasting 1 cycle, the sum is output. The address inputs of tram are driven by a block amux 
which permutes address inputs in state 2 to implement the transposed element order. 
Block muxd selects the appropriate signal for dout. 

 

a) Write appropriate VHDL to define type word as a 16 bit vector which can be 
used in entities instantiating transpose as well as the entity and architecture of 
transpose and tram. 

  [3] 

 

b) The RAM tram is implemented as a separate entity. Write an appropriate entity 
declaration for tram. You do not need to write an architecture for tram. 

  [2] 

 

c) Write an architecture for transpose which instantiates tram and implements 
blocks amux, muxd, fsm, alureg, and count.  

  [15] 
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ENTITY transpose IS 
  PORT ( 
      clk, reset : IN STD_LOGIC; 
      datain  : IN word; 
      dataout : OUT word 
    ); 
END transpose; 

Figure 2.1 
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Figure 2.2 

 

 
Figure 2.3 
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3. Figure 3.1 illustrates a hardware engine to compute the Mandelbrot fractals which 
implements repeatedly two complex number iterations each of the form: 

z′r := round{(zr*zr - zi*zi)*2-n}+ cr 

z′i := round{2zi*zr*2-n} + ci

 (3.1) 

 where zi, ci, zr, cr are two’s complement m-bit signed integers representing imaginary and 
real parts of (fixed point) complex numbers z and c respectively, and z′  is the new value 
of z. The function round implements rounding to the nearest signed integer.  

 

 

a)  A fixed-point signed vector x(m-1:0) with n fractional bits (n < m) may be 
rounded to the nearest fixed-point integer by adding bit x(n-1) onto x at bit index 
n, and setting the bottom n bits to 0.  Write a VHDL function: 

 FUNCTION roundn(n: INTEGER; x: SIGNED) RETURN SIGNED; 

 which rounds a signed fixed point vector x to the nearest integer.  

  [4] 

 

b) Figure 3.1 shows hardware to implement Equation (3.1). The multiplier blocks 
compute products zi*zi, zi*zr, zr*zr, which are held in REG1. The block COUNT is 
a one bit counter. Block ASR computes the new values z′i, z′r  from these products 
and the complex constant c, which is output from multiplexer MUX. Supposing 
complex inputs ca and cb are constant, determine the output of REG2 for the first 
four clock cycles after reset. Hence explain how the circuit computes Equation 
(3.1). 

  [4] 

 

c)  Define a VHDL type complex which implements a complex number as an array 
of two signed vectors, each of length m, where m is a constant. 

  [2]  

 

d) You may assume that the VHDL operator : 
 * : signed × signed → signed  
 synthesises signed multipliers. The length of the result is the sum of the lengths 

of the two operands. Using the * operator and previous answers from this 
question write a VHDL architecture for the entity in Figure 3.2 which 
implements Figure 3.1.  

  [10] 
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ENTITY mandelbrot IS 
  GENERIC( n : INTEGER);  -- precision 
  PORT( 
    ca, cb  :   IN complex; 
    z       :   OUT complex; 
    reset, clk: IN std_logic; 
    casel:      OUT std_logic -- '1' when ca is selected 
    ); 
END mandelbrot; 

Figure 3.2 

VHDL & Logic Synthesis page 7 of 9 



4.  

(a)  Explain how in VHDL constant expressions are synthesised differently from 
signals whose value may change: 

(i) as indexes of arrays 

(ii) as operands of logical operators.  

 Specify three distinct contexts in which VHDL identifiers can represent constant 
expressions. 

  [4] 

 

(b) Figure 4.1 shows VHDL entity and architecture permute which has k bit input a 
and output b. Precisely what hardware will this synthesise if 

(i) k = 2, m = 1 

(ii) k = 4, m = 2 

  [2] 

 

(c) Entity switch in Figure 4.3  uses multiple permute blocks all with k=2, m=1. It 
connects 2n inputs a to 2n outputs b and is made up of n layers labelled 0 to n-1 
each containing 2n-1 copies of permute with identical p input as illustrated in 
Figure 4.2, where the dots indicate repeated blocks which have been omitted. 
Between layers q and q+1 there is an array of 2n signals x(q). You are given 
synthesisable functions x0(q,i) and x1(q,i) which determine the 
connections of the permute blocks. In layer q, the ith copy of permute (i = 
0,…,2n-1) is connected as in Figure 4.4. 

 Using one or more FOR GENERATE loops, complete architecture synth in 
Figure 4.3 using synthesisable code. [14] 

 

 

 index 0 index 1 

xin x(q)(x0(q,i)) x(q)(x1(q,i)) 

xout x(q+1)(x0(q,i)) x(q+1)(x1(q,i))

Figure 4.4
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ENTITY permute IS 
GENERIC(k,m:INTEGER);   
PORT ( 
      p    : IN std_logic_vector(m-1 DOWNTO 0); 
      xin  : IN std_logic_vector(k-1 DOWNTO 0); 
      xout : OUT std_logic_vector(k-1 DOWNTO 0) 
    ); 
END permute; 
 
ARCHITECTURE behave OF permute IS 
BEGIN 
 G1: FOR i IN k DOWNTO 1 GENERATE 
 xout(i-1) <= xin((i*(conv_integer(unsigned((p)))+1) mod k+1)-1); 
 END GENERATE G1; 
END behave; 

Figure 4.1 
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Figure 4.2 

 
ENTITY switch IS 
   GENERIC(n: INTEGER); 
   PORT( a: IN std_logic_vector(2**n-1 DOWNTO 0); 
         b: OUT std_logic_vector(2**n-1 DOWNTO 0); 
         sel: IN std_logic_vector(n-1 DOWNT0 0) ); 
END switch; 
 
ARCHITECTURE synth OF switch IS 
  TYPE grid IS ARRAY (0 TO n+1) OF std_logic_vector(2**n-1 DOWNTO 0); 
  SIGNAL x: grid; 
BEGIN 
END synth; 

Figure 4.3 
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