E3.05

IMPERIAL COLLEGE LONDON ISE3.19

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2004

MSc and EEE/ISE PART IIl/IV: MEng, BEng and ACGI

DIGITAL SYSTEM DESIGN

Wednesday, 5 May 10:00 am

Time allowed: 3:00 hours

There are SEVEN questions on this paper.

Answer FOUR questions.

All questions carry equal marks

Corrected Copy

Any special instructions for invigilators and information for
candidates are on page 1.

Examiners responsible First Marker(s) : P.Y.K. Cheung
Second Marker(s) : D.M. Brookes

© University of London 2004

E3.05
ISE3.19

Special instructions for invigilators: None

Information for candidates:

In the figures showing digital circuits, all components have, unless explicitly indicated otherwise,
been drawn with their inputs on the left and their outputs on the right. All signals labelled with the
same name are connected together. All circuits use positive logic. The least significant bit of a bus
signal is labelled as bit 0, and the most significant bit with the highest integer number. Therefore
the signal X[7:0] is an eight bit bus with X7 being the MSB and X0 the LSB.

Hexadecimal numbers are prefixed with ‘$’. For example the decimal number 10 is written as $A.

In questions involving circuit design, you may use any standard digital circuits that are not
explicitly forbidden by the question provided that you fully specify their operation.

Marks may be deducted for unnecessarily complex designs unless you are explicitly instructed not
to simplify your solution.

Page 1 of 8

E3.05
ISE3.19

Figure 1.1 shows a controller circuit for a crisp vending machine. The machine accepts 50p, 20p
and 10p coins and, if excess money has been inserted, will retain credit for the next purchase.

Coins can only be inserted one at a time and, for each coin inserted, one of the signals P50, P20 or
P10 goes high for about 20ms. There is at least a gap of 100ms between each coin insertion. A
packet of crisp is released when VEND goes high.

The controller circuit consists of a FSM implemented with a ROM and a 5-bit register REGA
clocked by the signal CLK. A 4-bit adder ADD4 and a second register REGB keep the current
credit received so far. The carry input of the adder is connected to logical ‘0’ and the carry out is
one of the inputs to the multiplexer. The multiplier MUX41 selects P50, P20, P10 or COUT to
drive the FSM,

The contents of the ROM are as follows:

Addr[2:0] Data[7:0]
STATE([1:0] TEST NXT_STATE[1:0] CREDIT[3:0] NXT_ADD NXT VEND
0 0 1 0 0 0
0 1 0 5 1 0
1 0 2 0 0 0
1 1 1 2 1 0
2 0 3 7 0 0
2 1 2 1 1 0
3 0 0 0 0 0
3 1 0 7 1 1

b)

d)

Assuming that a 50p coin is inserted and by considering State 0 alone (i.e.
STATE [1:0]=0), explain the entry and exit condition for State 0 and the action taken in
this state.

[4 marks]

With the help of an ASM chart or a state transition diagram, shows the sequence of states
occupied by the FSM, the factors that determine the state transition and the actions taken
in all other states. '

[8 marks]

Explain with justification how you deduce the price of a packet of crisp.
[4 marks]

Assuming that the worst case delays are given as follows: adder, 5 ns; multiplexer select
to output, 4 ns; multiplexer input to output, 1 ns; ROM, 8 ns; register setup time, 2 ns;
hold time 0 ns; clock-to-Q, 2 ns, what is the maximum frequency of the clock signal cLx
for the controller to work correctly?

|4 marks]

Page 2 of 8

2. a)

b)

E3.05

ISE3.19
ADD4 4
z i REGB
N couT
BALANCE
SUM
CREDIT 4
B
cout
CLK
ROM L‘E REGA
STATE "2 NXT_ADD ADD
2 Data
Addr 7.0} | _NXT_VEND : VEND
Test| (201 2 2
NXT_STATE
S . STATE

2 MUX —

G1:0 a

ot

couTt z
3
P10 2
P20 g
P50 0

Figure 1.1

Design an 8-bit x 8-bit unsigned, parallel multiplier using only adders and four 4 x 4 unsigned
parallel multipliers. Show your solution in the form of a clearly labelled schematic diagram.
[12 marks]

The Altera FLEX10K family of FPGAs contain Embedded Array Blocks (EABs) that can be
configured as 2048 x 1-bit, 1024 x 2-bit, 512 x 4-bit or 256 x 8-bit ROM blocks. They also
contain Logic Elements (LEs), each having a 4-input Look-Up Table (LUT) and a register.
Each LE can implement one bit of a ripple carry, and each EAB is operated synchronously
with a latency of 1 clock cycle.

The multiplier in (a) is modified to become a pipelined multiplier and is implemented using a
FLEX10K device. How should the solution in (a) be modified? What is the pipeline latency of
the multiplier? Estimate with justification the resources needed to implement this multiplier
on a FLEX10K device. '

[4 marks]

Assuming that the delays of the EAB, the LUT and the register inside a Logic Element are 4

ns, 2 ns and 1 ns respectively, and that the setup time of the register is 1 ns, estimate the

maximum clock rate that this pipelined multiplier will operate. Ignore any interconnect delay.
[4 marks]

Page 3 of 8

E3.05
ISE3.19

Figure 3.1 depicts a 256 x 32 bit synchronous stack or last-in-first-out (LIFO) memory module
that is implemented inside an Altera FLEX10K FPGA device. All operations are synchronous to
a system clock signal c1k. The signal reset initializes the LIFO to an empty state. The LIFO is
enabled by the strobe signal which goes high for one cycle when there is either a push or a pop

operation. y
P o155

On the rising edge of clk, input data d_infis pushed onto the LIFO if push _pop and strobe
signals are both high. Similarly output ddta is popped onto d_out if push _pop is low and
strobe is high. The first data words read oyt from the LIFO is the last data stored. If the number
of data words remaining in the LIFO is , the signal full goes high and any further push
operations will be ignored. Similar if the number of data words stored is 0, the signal empty goes
high and any further pop operations will be ignored.

a) Using counters (as address pointers), static RAM and other circuit components, sketch the
block level design of this synchronous LIFO. You may use any functional logic blocks
such as adders, subtractors and comparators. Marks may be deducted for unnecessarily

complicated circuit.
[12 marks]

b) Figure 3.2 depicts a Embedded Array Block (EAB) found in the FLEX10K family of
FPGA. Each EAB can be configured as 2048 x 1, 1024 x 2, 512 x 4 or 256 x 8 block of
RAM. The data output can be registered or unregistered depending on how the EAB is
configured as shown in Figure 3.2.

(1) With the aid of a diagram, explain how you would use multiple EABs to implement

the memory used in the LIFO.
[3 marks]

(ii) Estimate with justification the approximate number of logic elements (LEs) required
to implement the LIFO. Each LE consists of a 4-inputs-1-output lookup table (LUT)
and an optional 1-bit register.

[5 marks]

r—_ 0
LIFO Data Data Data D Q 1
. 32) 32 In 8421
A_in aplmip! d_in d_out premiagpe- d_out 421 s
z RAM © Configuration
cdk ——> 256x 32 Address D Q g . memory
» empty 8,9,10,11 b a ;g xi
push_pop ———] X
1024 x 2
2048 x 1
strobe F——p fUll WE D Q ! WE
reset >
CLK
Figure 3.1 Figure 3.2

Page 4 of 8

Data
Out

E3.05
ISE3.19

4. a) What is the meaning and function of a ‘parity bit’ in connection with storage of digital

information in memory?
[2 marks]

b) Show how to correct single bit errors in data storage by adding a number of parity check bits to
the data being stored. If N check bits are added, how many data bits is it possible to protect
against single-bit errors? Illustrate your answer using 4-bit data as an example.

[3 marks]

¢) Figure 4.1 shows an error-correcting memory module that can correct single bit error in the
data p7: 0. The signal ERROR at the output is high when an error is detected and low otherwise.

i) Design the parity bit generator circuit in the form of Boolean equations.
[5 marks]

ii) Design the parity checking circuit and the error correction circuit. Demonstrate that your
design works properly with the example D7:0= 10100011 where an error has occurred in
D2. Gate level design is not required.

[10 marks]
D7:0 =2 Parity Bit 1__ ParityBit | ERROR
Generator checker
_ Error g Q7:0
Data_in Data_out Correction 74
Memory
Module
Address
Address
Figure 4.1

Page 5 of 8

E3.05
ISE3.19

. Figure 5.1 shows an electronic system that counts the number of people entering a building using
Interruption of light on sensors A and B. The outputs of the sensors, in_A and in_B are high
when the sensors are obscured. Two sensors are used to ensure that glitches on either in_A and
in_B are ignored. This prevents a person dithering at the door from being counted more than
once. The two sensors signals in_A and in_B are used to drive a finite state machine which
generates a ctr_enable signal to a synchronous up counter as shown in the timing diagram
shown in Figure 5.2. The system should ignore people leaving the store. You may also assume that
the door is narrow enough that people enter or leave singly and there is always a gap between
them,

a) Design the finite state machine in the form of a state diagram. State any assumptions that
you make.
[12 Marks]

b) Using one-hot encoding, design the FSM in the form of registers and Boolean equations. A
circuit diagram is not required.

[8 Marks]
CLK
f L L C1+
: S ctr_enable 16 Ctrn
: in_B
Lot — : Finite —J [_
s State
> in A Machine ent —— output
Dire.ction
of Travel
Figure 5.1
in_A
L e T o R 1
ctr_enable
Figure 5.2

Page 6 of 8

E3.05
ISE3.19

6. Figure 6.1 shows a microprocessor connected to a 16M x 32 bit SDRAM module through an
address decoder and an interface circuit. The timing of the microprocessor and the SDRAM for
reading a burst of four memory words is shown in Figure 6.2. The address bus A31 : 0 becomes

valid and the address strobe signal AS is asserted at time B after the rising edge of the clock
signal cLx during the clock cycle TO. The period of the clock is A. At time C after AS s
asserted, the address decoder circuit produces a chip select signal CS , which is asserted low for
addresses in the range $00000000 to $OOFFFFFF provided that AS s also low. The row address

strobe signal RAS and the column address strobe signal CAS are asserted by the SDRAM
interface circuit for one clock cycle on the falling edge of the clock during T1 and T4 respectively.

The microprocessor reads four consecutive words from SDRAM on the rising edge of the clock if
the DTACK signal is sampled low.

Design the address decoder and the SDRAM interface circuit to generate @, RAS, E‘;IE,

DTACK and the memory address bus signals AD11:0. State the relationship between the time
periods A, B and C, and any other constraints or assumptions under which your design is valid.

[20 marks]
GTACK
DTACK A31:0 A31:0 RAS RAS
—_ — TAS
AS L Address cs ISID?'AM cas
L1 Decoder et AD11:0
pProc SORAM
16M x 32
CLK
CLK cLK D31:0leg ! D31:0
CLK
Figure 6.1
PELYN

TO T1 T2 T3 T4 TS T6 T7 T8 T9 T10 | T11 | T2

XSS U O S I
A31:0 |) X
BT —
& T —
RAS L/
cAS A\ J

ADV1:077777 77K row asar Y coumn adar K777/ 777700 10 s i s

DTACK \ /

D31:0 (NNt X Ne2 X Nea -

Figure 6.2

Page 7 of 8

E3.056
ISE3.19

7. A 2-dimensional vector with coordinate (x,y) is rotated by 30° counter clockwise to (x "y by
applying equation 1:

)

where a =d=0.1101111,,5=0.1, and ¢=-0.1,. The input coordinates x and y lie in the range
+511 to ~512, and are expressed in 2’s complement form.

a) By employing distributed arithmetic, design at architectural level a circuit to implement this
coordinate rotation engine. All inputs and outputs are synchronous to a system clock signal
CLK and are available as parallel data. Show the widths of the datapaths and the positions of
the binary points in your design so that there is no loss of precision throughout the circuit.

{12 marks]

b) Determine the contents of all ROM:s used in your design.
[8 marks]

(END]

Page 8 of 8

cl.0

Tee {19

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
M.Eng., B.Eng., B.Sc(Eng.) and A.C.G.I. EXAMINATIONS 2004

PART Il and PART IV

DIGITAL SYSTEM DESIGN

SOLUTIONS

First Marker: Peter Y. K. Cheung

Second Marker: Mike Brookes

Answer to Question 1

This question tests students’” understanding of FSM as implemented using lookup table and register.
It is also complicated by the fact that the FSM is link to a adder which keeps track of the current
credit balance.

a)

b)

d)

>

\

->

>

State 0 is entered either from State 0 or State 3. Before entering State 0, NXT_State[1:0] =0,
selecting P50 as output of MUX41 to drive TEST. We are therefore testing for a 50p coin in
State 0. If a 50p is detected (i.e. P50 = ‘17), three things happens: 1) the machine stays in
State 0 until P50 goes low, 2) it outputs a value 5 (for 50p) on CREDIT[3:0] and, 3) it
produces a rising edit on the signal ADD to update BALANCE stored in REGB. Ifa 50p is

not detected, it proceeds to State 1.

State 1: the same as State 0 except that it tests for
a 20p coin.

State 2: almost the same as State 1, again it tests
for a 10p coin. However, something else
happens in State 2. The value of CREDIT is set
to 7 if P10 is low. The adder will add 7 to the
current BALANCE value. This will cause COUT
to go high if BALANCE is 9 or higher before
entering State 3. Note that although the adder
performs the addition, the result sum is NOT
saved in REGB because the NXT ADD signal is
low. This is merely a test!

State 3: NXT_State is always 0. However, if
TEST is low (no COUT), nothing else happens.
[f TEST is high (i.e. COUT="1"), it indicates that
BALANCE is 9 or higher. It asserts

NXT VEND and add 7 to BALANCE, which is
the same as subtracting 9!

(I wonder how many students will get this!)
[8]
See b) above. Crisp costs 90p.
[4]
Worst case path is:
CLk on REGA to Q (2ns)
to ROM output (8 ns)
ADDER COUT (5 ns)
MUX in-out (1 ns)
REGA setup (2 ns)

Therefore CLK period must be at least:

(2+8+5+1+2)ns.

Page 2 of 8

Max frequency = 55.6 MHz.

[4]

v

o]
Test for 50p coin. Update
BALANCE by asserting ADD

0

Yy

Test for 20p coin. Update
BALANCE by asserting ADD

0

T
7]
Test for 10p coin. Update
BALANCE by asserting ADD

5

3
Test for 10p coin. Update
BALANCE by asserting ADD

BALANCE >=

ubtract 90p from
BALANCE

a)

Answer to Question 2

The following diagram explains how 8 x 8§
unsigned multiplication can be performed using 4
4x4 multipliers. The 8-bit numbers are divided
into lower and upper nibbles. Use cross
multiplication to obtain partial products and add
these together. The method used here uses
mintmum size adders. I will accept designs using
less optimal configurations.

Be careful about bit alignment and possible
overflow.

This map to the following circuit:

| b4 | b30 |

Y[3:0]

a[7:0] a[3:0]
P[7:0]
8 P[3:014 |-
b[7:0] 4
P[7:4]
8 a0 9-bit
9
+
0 7
8
R[7:0]
4
al7:4
8 8
X
b[7:4
S[7:0]

12-bit

—~—— Y[15:4]

[12]

b) Use registers inside EAB and adders for pipelining. Add pipeline registers at locations shown in

shaded boxes. Pipeline latency = 3 cycles. Resources used: 4 EAB, 41 LEs.

setup time (! ns) =26 ns or 38.46 MHz.

Page 3 of 8

(4]

¢) Worst case delay between each pipeline stage = clk-reg_out (1 ns) + slowest adder (12 x 2 ns) +

[4]

Answer to Question 3

a)
d_in
Data_in
push_pop CTRS -— WE Data_out
UP/DN
empty 256 x32 RAM
[
full & EN g address
strobe
clk > clk >
R
=511
reset
[-0
L1
b))
data_In 18
dddress 9 256 x 8 _§,_
WE
clk >
256 x 8 —8‘*—
g ’_33_ data_out
8
256 x 8
-
256 x 8 '—4*—
-1
(11)
Component Resources
Memory 4 EABs
Stack UP/DN counter 8 LEs
=511 detect 2 LEs
= 0 detect 2 LEs
Other gates 2 LEs
Total 4 EABs, 14 LEs

Page 4 of 8

P-d_out

full

empty

[12]

[5]

Answer to Question 4
a)
Parity bit is an extra bit that can be added to a group of "0" bits and "1" bits to make the parity of
the group odd or even. Odd and even parity means that there are odd or even number of "1" s in
the group including the parity bit. Parity bit can be used to detect single bit error.
(2]
b)
Book work — show this using a 4-bit example adding 3 check bits. If there are N check bit, can
correct single bit error in 2N = N - 1 bit wide data.

(3]
¢) 1)
4 parity check bits are required to correct single bit error in 8-bit data. The 4 parity bits could be
assigned according to this table:

d7 dé ds d4 d3 d2 dl do
P3 X X X X
P2 X X X X
P1 X X X X X
PO X X X X X
Code 12 11 10 9 7 6 5 3

P3=d7 ® d6 & d5 & d4
P2=d7®d3®d2 @dl
Pl=d6®d5®d3®d2&do
PO=d6 @ d4 @d3 @ dl & d0

[5]
1)
P30 — Parity P'3:0 vi2 b7 — . &
D7:0 checker ——
0 — D6 —] Q6
Y11 e
D5 —] Q5
Y10 T
D4— | Q4
Yg B
4-t0-16 D3 —] Q3
decoder y7 L
D2] Q2
Y6 i
01— Qt
Y5 T
DO—] Q0
Y3 e
ERROR
YO ——{>o—

[10]

Page 5of 8

Answer to Question 5

a) Assertctr_enable in S4 only.

b)

Ox or 11

inputs: in_A, in_B

State encoding:
S0 = 00001
S1=00010
S2 =00100
S3=01000
S4 = 10000

[12]
Current State Inputs Next State
D4 D3 D2 D1 DO in_A in_B Q4 Q3 Q2 Q1 Qo0 ctr_enabl
0 0 0 0 1 0 X 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0 0 0 0 1 0
0 0 0 1 0 0 X 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 1 0 0
0 0 0 1 0 1 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 1 1 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 1 1 0 0 1 0 0 0
1 0 0 0 0 0 X 0 0 0 0 1 1
1 0 0 0 0 1 0 0 0 0 1 0 1
1 0 0 0 0 1 1 0 0 0 0 1 1
QO = D0&lin_A + DO&in_A&in_B + D1&!in_A + D4&lin_A + D4&in_A&in_B
Q1 = D0&in_A&lin_B + D1&in_A&lin_B + D2&in_A&!in_B + D3&in_A&!in_B + D4&in_A&!in_B
Q2 = D1&in_A&in_B + D2&i_nA&in_B + D3&in_A&in_B
Q3 = D2&!in_A&in_B + D3&!in_A&in_B
Q4 = D2&!in_A&lin_B + D3&!lin_A&lin_B
ctr_enable = D4
[8]

Page 6 of §

Answer to Question 6

Shift register based design is probably the simplest:

AS s
A31:24 =0 N =
A23:0 A23:12 0
A11:0 AD11:0
1 Mux
G
— SRG11
cs R
CLK —
1 [

1 —_—
=1 RAS
=1

L L o
] CAS
_; h.DTACK

[20]

Page 7 of &

Answer to Question 7

Students have designed a digital filter using distributed arithmetics as the course work for this
course. This question tests their ability to apply what they have learned in this course work to a
problem they have not come across before.

(a) Two inner products:-

= la b]xm .y d]xm

Each inner product can be computed using a distributed arithmetic engine as shown below.

x 10 3
ﬁL) PISO » S[9:0] {D[19:10] 5‘ >
axopit [FIBOL +/- E g E
ROM G G
y 0 - D[9:0]
—{ PISO > g
Q[10:1]
Q[19:11]

This circuit takes 10 cycles to compute each coordinate transformation. During the last cycle the
adder/subtractor works as a subtractor.

[15]
(b)
Use 9-bit ROM in 2’s complement fix-point format: ST.ITIIITIL where S=sign,I=0or 1.
ROM1 (ax+by)

Address Contents
0 0
1 a=00.1101111
2 b = 00.1000000
3 a+b =01.0101111

ROM2 (cx+dy)

Address Contents
0 0
1 ¢ = 11.1000000
2 d = 00.1000000
3 c+d = 00.0101111

[10]

[END]

Page 8of §

