IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2003

OPERATING SYSTEMS

Tuesday, 3 June 2:00 pm

Corrected Copy

Time allowed: 2:00 hours

There are FOUR questions on this paper.

Q1 is compulsory.
Answer Q1 and any two of questions 2-4.

Q1 carries 40% of the marks. Questions 2 to 4 carry equal marks.

Any special instructions for invigilators and information for
candidates are on page 1.

Examiners responsible First Marker(s) : T.J.W. Ciarke

Second Marker(s) : G.A. Constantinides

© University of London 2003

E2.14

Special Information for Invigilators

Each candidate must be given the booklet entitled uC/OS-1I Reference.

Information for Candidates

Information about uC/OS-1I can be found in booklet uC/OS-1I Reference.

Operating Systems II Page 1 of 5

The Questions

1. (a) Binary semaphores, and global interrupt disabling, are two methods that can be used in the
uC/OS-II RTOS to implement mutually exclusive access to a shared resource. Describe
briefly these methods, writing pseudocode that uses the appropriate system calls and/or
macros. Compare the effects on system performance and latency of the two methods.

[6]

(b) Explain the meaning of bilateral rendezvous. Write pseudocode using uC/OS-II system calls
to implement bilateral rendezvous between two tasks, using semaphores.

[5]

(c) Interrupt response time and task-level response time are two important determinants of RTOS
performance. Which is longer? Contrast the merits of running time-critical code at interrupt
and task level.

[6]

(d) In uC/OS-1I task scheduling is implemented by OS_Sched(). Describe precisely the effect on
tasks of calling this function, and under what circumstances task pre-emption will happen.
Your answer should distinguish clearly between ready-to-run, running, and waiting tasks.

6]

(¢) The uC/OS-II RTOS uses a tick interrupt generated by hardware at regular intervals. Explain
how this is used, detailing the system-level actions that occur as the result of this interrupt.
Discuss whether task pre-emption would be possible without the tick interrupt?

[6]

(f) Inthe uC/OS-II RTOS semaphores, and event flag groups, use different implementations for
the list of waiting tasks. Compare and contrast the two implementations, explaining in each
case why they were chosen.

[6]

(g) An application is currently running under uC/OS-II configured with semaphore, message box
and message queue services enabled. On inspection of the code it is noted that all semaphores
used are configured as binary semaphores. Suggest a possible optimisation to the uC/OS-11
configuration that would save code space whilst keeping functionality.

[5]

Operating Systems II Page 2 of §

2.(a)

(b)

(©)

(d

Explain the use of the task ready list in uC/OS-1I, specifying precisely the conditions for a
task to be in the task ready list.
(5]

Describe the implementation of the task ready list in uC/OS-I1, illustrating your answer by
showing the contents of OSRdyTbl and OSRdAyGrp when the task ready list initially contains
tasks 3,4,11,15, and explaining how OSUnMapThbl is used to determine the highest priority
ready task.

[10]
In uC/OS-1I it is never possible for the ready task list to be empty, so functions such as
OS_Sched() which calculate the highest priority ready task will never fail. Explain how
uC/OS-II ensures that an empty ready task list can never happen.
(5]

In a modified version of uC/OS-II there are maximum of 1023 tasks, numbered 1-1023.
Propose new data structures for OSRdyTbl, OSRdyGrp, OSMapTbl, OSUnMapTbl which
will implement the ready list in this system, quantifying the necessary increase in memory
resources.

[10]

Operating Systems II Page 3 of 5

~ 7N\
3. (a)

o aln S Asoidocos and dig 1
What are the advantages and disadvantages of foreground/background operating systems

when compared with pre-emptive multi-tasking operating systems?

[10]

(by A foreground/background system runs on a CPU with 16 prioritised interrupt levels (15=

(©)

lowest priority, 0 = highest priority). It has three time-critical jobs J1, J2, J3 which occur
repetitively at periods of 10us, 21us and 71us respectively. The execution time of each job is
el, e2 and e3 respectively. Each job has a hard deadline equal to its period (thus each
computation must finish executing before the next computation starts). Explain how you
would assign jobs to interrupt priority levels so that the likelihood of hard deadlines being
met is maximised, and state the rate monotonic scheduling condition on el e2,e3 for all hard
Jeadlines to be met (interrupt switch time may be ignored).

[10]

Three jobs J1, J2, J3 are synchronised with periods of 10us, 20us, 40us respectively, CPU
atilisation 50%, 25%, 25% respectively, and hard deadlines equal to their periods. You may
assume that all jobs become ready to run simultaneously at £ = 0. Show by drawing an
appropriate timing diagram illustrating when each job executes how 100% CPU utilisation
can be achieved whilst meeting all hard deadlines. Comment on the application of the rate
monotonic scheduling utilisation limit in this case.

[10]

Operating Systems I1 Page 4 of 5

4.(a) Two tasks, 4 and B, both use a binary semaphore S to share a muiually exclusive resource. 4

has higher priority than B. Explain, giving the sequence of task switches and semaphore
operations on S, how priority inversion can cause execution of 4 to be blocked by a task C of
lower priority than 4. What is the condition on the priority of C necessary for this to happen?

[10]

(b) Figure 4.1 details the maximum CPU run length before waiting, and required task-level

(©)

response time, of 3 tasks X, Y and Z. You may assume that all tasks wait for a time much
greater than these run lengths, and that OS task-level response time is 15us. Calculate the
worst-case task-level response times to each task given other tasks priorities, and hence
determine all permitted priority orders of the three tasks.

[10]

Describe how the priority inversion in (a) can be avoided under uC/OS-II by using a mutex
semaphore, explaining carefully how dynamic task priority is implemented by the mutex
system code.

[10]

Task Maximum Required

run-length response-time

X 50us 50us

Y 30us 100us

Z 200us 95us
Figure 4.1

Operating Systems 11 Page 5 of 5

SOLUTIONS ISE2.14: Page 1 of 7

Solution to Question 1
a)
Interrupt switching, bracket critical section in code that switches interrupts on & off
OS_ENTER_ CRITICAL();
/* critical section */

OS_EXIT_CRITICALY();

(binary) semaphores. Execute critical section only when key of binary semaphore is obtained,
release it at end.

/* initialise semaphore with count=1 */
OSSemPend()
/* critical section */

OSSemPost()

Switching interrupts is very fast, but will increase interrupt and task level response time if
critical section is longer than any other section with interrupts switched off. Semaphores are
slower, and use system resources for the semaphore structure, but allow arbitrarily long
critical sections.

Page 1 of 7

b)

SOLUTIONS ISE2.14: Page 2 of 7

Bilateral rendezvous is when two tasks each wait for the other to reach a designated point
before both can then proceed. Use two binary semaphores, one for each task:

Initialise both semaphores with count=1.

Task A:

OSSemPost(SemB) /* signal task B have got here */

OSSemPend(SemA) /* wait for task B */

Task B:

OSSemPost(SemA)

OSSemPend(SemB)

d)

Task-level response is always longer than interrupt-level response. Code in interrupt runs
with smaller latency (interrupt level instead of task-level) but can't make use of OS task-level
communication primitives. Also interrupt code increases worst case latency of all task-level
code - this is usually unacceptable unless code is very short. A task, on the other hand, can be
given a priority appropriate to its function with faster operations scheduled at a higher priority
and unaffected.

OS_Sched() normally examines the list of ready tasks and schedules the highest priority task.
If this is the current (running) task there is no change, otherwise a ready-to-run task is run,
and the current task, ir running, changes state to reday-to-run. No change is made if either
scheduling is locked, or OS_Sched is called from a nested interrupt level (in the latter case
OS_Sched is guaranteed to be called on exit from the nested interrupts).

Task pre-emption occurs if there is a ready-to-run task with higher priority than the current
task, and the current task is also ready-to-run.

Page 2 of 7

2)

SOLUTIONS ISE2.14: Page 3 of 7

The tick interrupt is used to increment a global counter (OSTime), and check the TCB of
every system task. If OSTCBDLY is non-zero the task is waiting on a delay and this value
must be decremented. If the resulting value is zero the task must be checked to see if it is
waiting on anything else, and if not woken up. Finally, after all tasks have been so checked
OS_Sched is called which will if necessary pre-empt the current task with a higher priority
task.

Semaphores use a bit-map implementation of the ready list which is very efficient in both
space and, more critically time. Event Flag Groups use a doubly-linked list implementation
which is less efficient in both space and time. However it has the important advantage that the
list of currently waiting tasks can be accessed (by chaining down the list). This operation is
not easy to implement in the bit-mapped list. It is required since when a flag is changed each
task must be checked to see whether its wakeup condition is now met. Also, the linked list
provides a place to store the wakeup condition information.

The functionality of binary semaphores can be provided using message boxes, so the
semaphore code could be removed and application semaphores rewritten using message
boxes.

Page 3 of 7

SOLUTIONS ISE2.14: Page 4 of 7

Solution to Question 2

a) The task ready list represents the set of tasks currently ready to run. A task is in the list if it is
either ready to run or currently running.

b)
OSRdyTbl is a bit-map with bits 1 for ready tasks. Bits are ordered by priority, since each
task has a unique priority.
OSRdyGrp contains 1 bit for each byte in OSRdyTbl: this bit is 1 if any of the corresponding
OSRdyTbl bits is non-zero. This allows quick determination of the highest priority task.
OSRdyGrp
1 1
OSRdyTbl
1 1
1 1
(all other bits 0).

OSUnMapThl is a 256 byte table.

The value of OSUnMapTbl[x] is the bit index of the lowest index 1 in x. Therefore it is used
to determine first the index of the lowest 1 in OSRdyGrp, say y. Then it is used again to
determine the lowest index 1 in OSRdyTbl[y], which corresponds to the lowest number
(highest priority) task in the ready list.

Page 4 of 7

d)

SOLUTIONS ISE2.14: Page 5 of 7

The idle task is defined with the lowest possible priority, and always runnable. It runs when
no other task can run, and, as a useful side-effect, is used to calculate the total system idle
time, by continuously incrementing a counter. Since systems are defined always to have the
idle task, the ready list is never empty.

Increase OSRdyTbl to 10 bits, and OSRdyGrp to 128 bytes. OSMapTbl must now have 10
elements, and a 16 bit result, of which only the bottom byte is used for OSRdyGrp bit
manipulation. OSUnMapTbl needs to be 1024 bytes, and returns a number between 0 and 9.
If this cost in space is unacceptable then a slower implementation could be used in which the
top two bits are explicitly checked, rather than using a table lookup.

Page 5 of 7

SOLUTIONS ISE2.14: Page 6 of 7

Solution to Question 3

a)

b)

c)

Foreground/background systems require no OS kernel code, since all code is run from interrupts or a
single base-level loop. Thus they are simple and efficient. Switching between activities is performed
by interrupts and is very fast when compared with task-level switching. However there is no simple
way to implement threads of computation that can wait and synchronise with each other. Although
task-based systems can be translated into the equivalent systems using interrupts (via event./action
diagrams) the resulting code is very difficult to read and maintain. Therefore whenever application
level code is required in practice a pre-emptive multi-tasking system is preferable.

1) assign lower period jobs higher priority interrupts (only the order of the priorities matters, not the
precise values). E.g.: J1=P0, J2=P1, J3=P2. Given this, the RMS condition is that if total CPU
utilisation is less than:

3(2"% - 1) = 0.780. Therefore:

el/10+e2/21+e3/71 < 0.78 => hard deadlines always met.

Set higher priorities to lower periods. Tasks are:

Task Period Length

T1
T2
T3

10 5
20 5
40 10

T1 p—— —— ' ——
T2 - —
T3 —

In this case, because the times at which jobs occur are synchronised, higher utilisation than that
guaranteed by RMS theorem is possible. Note that the RMS theorem is a guaranteed lower limit,
below which all systems will meet deadlines, it does not imply that higher utilisations are impossible.

Page 6 of 7

SOLUTIONS ISE2.14: Page 7 of 7

Solution to Question 4
a)

Suppose C has priority greater than B but less than A. If C preempts B while B holds
semaphore key, and then A waits on key, A must wait until after C waits, even though it has
higher priority than C.

B pendson S

C preempts B

A preempts C

A pends on S, and waits. C is scheduled
C runs till it next waits. Then B runs

B poststo S

A is woken up, and pre-empts B

b)
Task X. Can have no tasks or Y greater priority (response-time 15 or 45us)
Task Y. Can have no tasks or X greater priority(response time 15 or 65us)
Task Z. Can have X and Y, or X or Y greater priority. (response time 95us or less)

ThusallowX>Y>ZorY>X>Z

A mutex semaphore boosts the priority of a task X that has acquired its key to a fixed higher
priority (defined at task creation time) which must not be used by any other task. The priority
boosting occurs when a higher priority task Y pends on the mutex until X posts to the mutex.
If the higher priority is greater than that of all possible tasks pending on the mutex, priority
inversion is avoided.

Page 7 of 7

