
Software Engineering II - Specimen Exam Answers Page 1 of 10

A1(a)
� Encapsulation adopts the principle of "information hiding" so that the

objects state can only be accessed through the objects operations. The
specification (the protocol) is kept separate from the implementation (of the
protocol). This encourages better designs that can be reused reliably.

� Polymorphism is the application of the same operation to different types of
object e.g. the observers in the Observer pattern may respond uniquely to
the update() message from the subject. By restricting assumptions that one
object makes about another object to a well defined protocol, it facilitates
extension (add new classes supporting the protocol) and adaptation
(implementation can change within a class). Polymorphism enables like-for-
like components to be plugged in and out of a system.

� Inheritance is a relationship between classes, which are organised into a
hierarchy. Classes lower (sub-classes) in the hierarchy inherit attributes
and protocol from classes higher (super-classes) in the hierarchy, then may
add additional attributes/operations and/or override operations. Inheritance
allows reuse of an existing class, so that only the programming of the
differences is required.

A1(b)
Some Object Oriented languages, like Smalltalk demand that every new class is
a subclass from an existing class in the overall class hierarchy. This enables the
class at the root of the hierarchy to provide a common protocol shared by every
class e.g. print state, inspect state, list sub/super-classes. The new subclasses
may override the inherited methods. The disadvantage is that every program
includes a collection of core classes which makes the binary bigger.

The C++ language has been designed so as not to demand the absorption of new
classes into the existing class hierarchy which leads to smaller binaries. The
downside is that in not being able to inherit a common protocol requires that
encapsulation is intentionally broken, in order to allow some classes access to
the otherwise private/protected class members. In C++ this is done through friend
functions. Typically, friend functions are added to a class protocol in order that
the I/O stream classes may display state information.
A1(c)
Advantage Disadvantage
simple to understand and implement,
activities are in a linear sequence, each
starts after the previous finishes

assumes requirements well-defined,
understood and unchanging, have to
repeat the whole sequence of steps if
requirements change.

widely used and has delivered many
successful software projects

feedback (e.g. ambiguity /
incompleteness) gained from latter
stages of development comes too late
since the development cycle is long

easy to track and time project stages all code written from scratch, does not
encourage reuse

Please note that many descriptive answers are longer and more detailed than would be expected in the exam
but are included in order to make "teaching points". Use the part-marks as a rough guide as to how much
detail is expected.

Software Engineering II - Specimen Exam Answers Page 2 of 10

A1(d)
Good dialogue with the domain experts
Classification e.g.Tangible, Role, Event, Organisation
Textual analysis/Grammatical parse - identifying nouns
The Iterative and Incremental process development cycle often reveals new
candidate classes
A1(e)
A derived association is an association deduced from other associations, and
helps reduce redundant associations which in turn reduces the threat of a difficult
to understand or heavily overloaded model. In UML its name is prefixed by a /

e.g. a Department maintains details of all its students thus can generate on
demand the derived association /TopStudent

A1(f)
Coupling is a measure of the dependency between classes resulting from
collaboration between objects to provide a service. It is desirable to have low
coupling between classes, which means that one class is not too dependent on
another, which leads to less maintenance and facilitates reuse.

Cohesion is a measure of how strongly related and focussed the responsibilities
in a class are. It is desirable that a class exhibit high cohesion, which leads to
less maintenance and facilitates reuse.
A1(g)
A) Dataflow e.g. pre-processor -> C++ compiler -> C compiler -> assembler ->
linker
B) starting code includes: (1) a main program, (2) subclass of TForm available for
customisation
C) Palettes = Repository/Database (passive) i.e.
DataCentred,
editor used for code editor can be swapped in and out i.e.
Independent Component,
 #include <cstdio> to use getchar() i.e.
Call and Return,
Visual Component Library is layered onto MFC i.e.
Virtual

Please note that many descriptive answers are longer and more detailed than would be expected in the exam
but are included in order to make "teaching points". Use the part-marks as a rough guide as to how much
detail is expected.

Software Engineering II - Specimen Exam Answers Page 3 of 10

A2(a)
The client module wraps a try-block around the code for normal operation
and provides a catch-block to handle each expected exception condition:

 try { // normal program code is here...

 } // error handling code is here ...
 catch (Exception2 o) { etc … }
 catch (Exception1 o) { etc … }
 catch (...) { etc … }
}
The service module throws an exception when it detects an error condition.
It is then the clients responsibility to decide how to react to this error
condition. The exception in an object thus can contain information to help
the client to determine how to respond.

class MyException{
 public:
 MyException() : name("useful info here"){}

 string getName(void){ return name; }

 private:
 string name;
};

 etc …

MyException o;
throw o; //assume error detected so throw exception

Please note that many descriptive answers are longer and more detailed than would be expected in the exam
but are included in order to make "teaching points". Use the part-marks as a rough guide as to how much
detail is expected.

Software Engineering II - Specimen Exam Answers Page 4 of 10

A2(b)
class Amphibian {
 public:
 virtual void initialise(void)=0;
 int getPosition(void);
 void setPosition(int);
 clColor getColor(void);
 void setColor(clColor);
 protected:
 int position;
 clColor colour;
};

class Frog : public Amphibian {
 public:
 void initialise(void);
};

class HoverFrog : public Frog {
 public:
 int getHeight(void);
 void setHeight(int);
 void initialise(void);
 private:
 int height;
};

Please note that many descriptive answers are longer and more detailed than would be expected in the exam
but are included in order to make "teaching points". Use the part-marks as a rough guide as to how much
detail is expected.

Software Engineering II - Specimen Exam Answers Page 5 of 10

A2(c)
The TComplex interface is limited to those complex number
properties that are needed by the client module. If it became
apparent that a larger class was available it is possible that a
resourceful programmer of the client module could circumvent
the services provided by our TComplex class, so that we could
no longer be in control of the consequences. It is quite common
to wrap a new class around a class from the standard library in
order to limit and control the services provided by the new class
template <class A>
class TComplex{
 public:
 TComplex(A r, A i):n(r,i) {}

 complex<A> add(TComplex n1) { etc … }
 complex<A> minus(TComplex n1) { etc … }
 private:
 complex<A> n;
};
TComplex <float> n1(100.0, 0.0);
TComplex <double> n2(0.0, 100.0);
TComplex <long double> n3(100.0, 100.0);

A2(d)
Multiple (as opposed to single e.g. Parent) inheritance occurs
when a sublass has more than one superclass (e.g. Parent1,
Parent2).

The syntax in C++ just requires a list of the superclasses e.g.

class Child:
 public Parent1, public Parent2 etc …

Please note that many descriptive answers are longer and more detailed than would be expected in the exam
but are included in order to make "teaching points". Use the part-marks as a rough guide as to how much
detail is expected.

Software Engineering II - Specimen Exam Answers Page 6 of 10

A3(a)

A3(b)

Note: system boundary not required
since system will not be implemented
in software

Please note that many descriptive answers are longer and more detailed than would be expected in the exam
but are included in order to make "teaching points". Use the part-marks as a rough guide as to how much
detail is expected.

Software Engineering II - Specimen Exam Answers Page 7 of 10

A3(c)
1. omission of the orchestrating instance (which is responsible initiating each

use-case i.e. dynamic behaviour)
2. omission of navigation of associations (which can only be determined after

consideration of dynamic behaviour)
3. omission of methods (which can only be determined after consideration of

dynamic behaviour)
A3(d)

A3(e)

Please note that many descriptive answers are longer and more detailed than would be expected in the exam
but are included in order to make "teaching points". Use the part-marks as a rough guide as to how much
detail is expected.

Software Engineering II - Specimen Exam Answers Page 8 of 10

A4(a)

A design pattern is a simple and elegant design that captures a general solution
to a general problem (i.e. not domain specific) that has been developed over time
and is widely applied and accepted as current "best practice".

In a small system, the object with the changed state can send messages to its
dependents to inform of the state change. However, it is not always logical for an
object to know details about all its dependents. The Observer pattern is used
when there is a one-to-many dependency between objects, such that if there is a
state change for a particular object, a number of other objects need be notified.
For example, if a file is created in a MS-Console window it is reasonable to
expect an MS-Explorer display of the same folder to instantly include the new file.
These two applications should be de-coupled so MS-Explorer as are other
programs which display folder contents e.g. Compilers, Word-processors would
be expected display updated state changes.

The Observer Design Pattern provides a loose coupling between the subject
(e.g. folder contents) and the observers (e.g. MS-Explorer). The subject only
knows that concrete classes conform to the Observer protocol (including the
update() message), but do not know how observers will respond to the messages
in that protocol. A drawback is that observers are unaware of each other and can
cause message cascades. Not all observers need react to the update() message
in the same way, for example a text format change will not affect the word-count
in a word-processor. Thus, the receiver of an update() message can respond
polymorphically. The Observer design pattern is often used during debugging
whilst a program is in development then is de-registered when the program is
released.

A4(b)
The client-server architecture reveals the underlying network details e.g. sockets,
server-sockets, ports, protocol etc… Thus, it is not a very high-level of
abstraction when compared to Object Model architectures e.g. Distributed
Objects, Event-based, Tuple-spaces. Performance is good since it is inversely
proportional the level of abstraction. However, some performance is lost since
the protocol is XML based which is a text format and can be verbose (the Object
Model based architectures are all binary. This is compensated by the ease of
adaptation of the protocol, since the XML data can include the definition of the
protocol.

Please note that many descriptive answers are longer and more detailed than would be expected in the exam
but are included in order to make "teaching points". Use the part-marks as a rough guide as to how much
detail is expected.

Software Engineering II - Specimen Exam Answers Page 9 of 10

A4(c)

Please note that many descriptive answers are longer and more detailed than would be expected in the exam
but are included in order to make "teaching points". Use the part-marks as a rough guide as to how much
detail is expected.

Software Engineering II - Specimen Exam Answers Page 10 of 10

Please note that many descriptive answers are longer and more detailed than would be expected in the exam
but are included in order to make "teaching points". Use the part-marks as a rough guide as to how much
detail is expected.

A4(d)

Advantages:
� data acquisition equipment can generate data for

processing later
� different processing tools can exchange data
� data can be embedded in HTML documents and processed

by client-side technologies e.g. Javascript
� etc…

<!-- XML data for two signals -
 Note: only one requested in the question -->

<SIGNALLIST>

 <SIGNAL>
 <Description>
 Sampled signal: x[n]=1+sin(nPI/4)+2cos(nPI/2)
 </Description>

 <Domain>Time</Domain>

 <NumberDataValues>8</NumberDataValues>

 <DataValues Complex="NO">3.0 etc… </DataValues>
 </SIGNAL>

 <SIGNAL>
 <Description>
 Complex spectral harmonics x[k]
 obtained from DFT of x[n]
 </Description>

 <Domain>Frequency</Domain>

 <NumberDataValues>8</NumberDataValues>

 <DataValues Complex="YES">1.0 etc… </DataValues>
 </SIGNAL>

</SIGNALLIST>

	A3(b)
	A4(a)

