
 

Software Engineering II  Page 1 of 20  

Please note the following: 
  

• Q4 (b) and (d) of the 2003 exam (the first presentation of E2.12) includes 
some XML and Distributed computing issues which have been dropped 
from the course content in order to include more material on UML and 
REUSE.  

 
• Question 4(c) concerns the translation of Java into a UML Activity 

diagram. This activity is still examinable, however, if it appears in the 
future it will use C++ and not Java.  

 
 

• The solutions provided here are often much more verbose than would be 
expected in the exam.  This will be clarified in the summer term revision 
lecture. 

 
• The only change to content of the exam is that Q4 is now all about 

REUSE (in all its forms). Thus the paper will consist of the following: 
 
 

o Q1 (compulsory and worth 40%) examines all the course 
contents, then you may select 2 out of 3 (each worth 30%) i.e. 

 
 Q2 C++ 

 
 Q3 UML 

 
 Q4 REUSE 



 

Software Engineering II  Page 2 of 20  

IMPERIAL COLLEGE LONDON 
 
 
 
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING 
EXAMINATIONS 2003 
 
 
ISE II: M. Eng., B.Eng. and ACGI 
 
 
 
 
 
 
SOFTWARE ENGINEERING 2  
 
 
 
12 June 2003, 2pm 
 
Time allowed: 2:00 hours 
 
 
 
 
 
 
There are FOUR questions on this paper. 
 
Q1 is compulsory. 
Answer Q1 and any two of the questions 2-4. 
 
Q1 carries 40% of the marks. Questions 2 to 4 carry equal marks. 
 
 
 
 
Any special instructions for invigilators and information for  
candidates are on page 1. 
 
 
 
 
Examiners responsible First Marker(s): Madden,L.G. 
   Second Marker(s): Pitt,J.V. 



 

Software Engineering II  Page 3 of 20  

1.  (a)  What are the three main characteristics of an Object Oriented 
Programming language? 

      [3] 
 
 
 
     (b) A feature of some Object Oriented languages (e.g. Smalltalk) is that 

every new class is integrated into a core class hierarchy, whilst 
other Object Oriented languages (e.g. C++) do not have a core class 
hierarchy. Describe one advantage and one disadvantage in C++ as 
a result of this feature.  

                      [2] 
 
 
 
 

(c)  Give one advantage and one disadvantage of the Iterative and 
Incremental development process model. 

      [2] 
 
 
 
 

(d)  Give four categories of classification that may be used for 
identification of candidate classes during modelling. Give an 
example of each category in the context of sitting this exam. 

      [4] 
 
 
 
 

(e) What is a Qualified Association? Explain why is it beneficial to use 
a Qualified Association. Give an example of a Qualified Association 
using UML. 

      [4] 
 
 
 
 

(f)  Explain how the proper application of the guiding principles of High 
Cohesion and Low Coupling could have helped reduce the 
consequences of the Y2K problem, i.e. changing the date 
representation in a large monolithic program. 

      [2] 
 
 



 

Software Engineering II  Page 4 of 20  

 
1.  (g) The following questions are all based upon observation of the Borland 

C++ Builder (BCB) Integrated Development Environment: 
 
 

(i) Identify the architectural style used in compiling a C++ source file 
under BCB. 

      [1] 
 
 

(ii) A framework is domain specific, what type of domain does BCB 
address? 

      [1] 
 
 

(iii) Identify those elements of BCB that can be described as Software  
 Components. 

      [1] 



 

Software Engineering II  Page 5 of 20  

 
2.  (a) Explain why the C++ code shown in Figure 2.1 could form the basis of a  

robust Graphical User Interface developed in Borland C++ Builder. 
      [4] 

 
 

     (b) (i) Use the class diagram shown in Figure 2.2 to write C++ source code  
           for defining the three classes as they should appear in an interface  
           file. You can assume a suitable constructor already exists. The  
           UML stereotypes provide additional C++ specific implementation  
           details . 

      [4] 

 

(ii)  Write a short code extract showing how concrete filter objects (as 
defined in Figure 2.2) are created using a polymorphic variable. 

      [2] 

 

     (c) (i)  Briefly explain why the C++ program shown in Figure 2.3 is a good  
                 demonstration of reusable and adaptable code.    
                       [2] 

 
          (ii) Rewrite the C++ Component class definition so that the data  
            members of the class std::complex use template classes  
            instead of the type double.  You may write stubs for the member  
            function bodies. 
                 [3] 
 
    
          (iii)  Write a short C++ code extract showing how Component objects    
            can be created with different actual datatypes for the data  
            members of the class std::complex e.g.  float, double and   
            long double. 
                [1] 
 
 
 
     (d) What is the Common Grandparent problem in C++ ?  Illustrate your answer 

with a UML diagram.                   [4] 
 



 

Software Engineering II  Page 6 of 20  

try { 
    double d = StrToFloat(Edit1->Text); 
    Form1->Caption = "Good Input"; 
}  
catch (EConvertError &e { 
// ShowMessage() displays the argument in a message box. 
    ShowMessage("Bad Input"); 
} 

Figure 2.1 

 

 

 

 

 

 

 

 

 

Figure 2.2 
class Component { 
  public: 
    Component(double r, double i):z(r,i) {} 
 
    complex<double> series(Component z1){  
      return this->z + z1.z;} 
 
    complex<double> parallel(Component z1){  
      return pow((pow(this->z,-1)+pow(z1.z,-1)),-1);} 
 
    complex<double> potDiv(Component z1){  
      return z1.z/(this->z+z1.z);} 
 
  private: 
    complex<double> z; 
}; 

Figure 2.3 



 

Software Engineering II  Page 7 of 20  

3.  (a) Perform a textual analysis of the text below to identify the classes, then    
draw a Class-Association diagram: 

A quadraphonic audio system consists of an amplifier which is 
connected with many kinds of audio player devices. Players include 
cd, record, cassette and radio tuner. Each player device connects 
to a single amplifier. The amplifier is connected to 4 speakers and 
each speaker is connected to a single ampilifier. Amplifiers are 
classified as preamplifier, power amplifier or integrated (i.e. 
contains both a preamplifier and a power amplifier). 

                    [6] 
 
 

   (b) Draw a Use-Case diagram from the perspective of a user of a standard 
laboratory signal generator. Include at least three Use-Cases. You can 
assume that the system will be implemented in software. 

      [2] 
 
 
 
  

(c) Identify three different features of Figure 3.1 that suggest that this is not 
an Initial Object Model. 

      [3] 
 
 
 
 
 

 (d) Convert the Sequence Collaboration diagram shown in Figure 3.2 into a 
Sequence Interaction diagram. 

      [5] 
 
 
 

 
 
     (e) Convert the C++ code shown in Figure 3.3 into a Class-Association  
           diagram. 

      [4] 
 



 

Software Engineering II  Page 8 of 20  

 
 
 
 
 
 
 

 
 

Figure 3.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 
 

class FullAdder{  
}; 
 
class FourBitAdderSubtractor{ 
  public: 
      FullAdder  *includes; 
}; 
 
class FourBitAdder: 
   public FourBitAdderSubtractor{  
}; 
 
class FourBitSubtractor: 
   public FourBitAdderSubtractor{  
}; 

Figure 3.3 



 

Software Engineering II  Page 9 of 20  

4.  (a) (i) Briefly describe what it means to say that "Design patterns are  
                      discovered  (i.e. mined) not invented". 

      [2] 
 
 
      (ii) Name one design pattern and briefly describe what problem it  
                      solves. 

      [2] 
 
 
 
 
 

  (b) Explain what it means to say that a Distributed Computing System can be 
distinguished by how far it distances itself from the underlying details of 
the network. 

      [4] 
 
 
 
 

 
 
     (c) The Java program shown in Figure 4.1 is a very basic WWW server 

application. Use a UML activity diagram to highlight the key elements of 
this server application, which is typical of any server in a client-server 
architecture. 

      [4] 
 
 
 
 
   
     (d)  The XML DTD shown in Figure 4.2  provides a partial description for a  

typical Object Oriented class definition.  
 

(i)  Suggest three potential benefits that might be gained from 
expressing a class definition in XML.           

      [3] 
 
 

 
(ii)  Using the DTD in Figure 4.2 write some XML data for the abstract 

Filter class shown in Figure 2.2 of Question 2. 
      [5] 

 



 

Software Engineering II  Page 10 of 20  

Socket s; 
ServerSocket ss; 
 
int port = 8080; // experimental WWW server port number  
  
ss = new ServerSocket(port); 
 
while(true){ 
    s = ss.accept(); 
 
    BufferedReader br=new BufferedReader( 
                new InputStreamReader(s.getInputStream())); 
    PrintWriter pw=new 
                     PrintWriter(s.getOutputStream(),true); 
     
    String read1=br.readLine(); 
    bool notDone=true; 
    while(notDone){ 
        read1 = br.readLine(); 
        if(read1.equals(""))//blank line terminates request 
           notDone=false; 
     } 
 
    pw.print("<HTML><BODY><P>EEE Dept.</P></BODY></HTML>"; 
    // more print messages would appear here … 
 
    pw.close(); br.close(); s.close(); 
} 

Figure 4.1 
 

<!-- DTD for a defining a CLASS --> 
<!DOCTYPE CLASSDEFINITION[ 
                        <!ELEMENT CLASSDEFINITION (CLASS)*>     
 
<!ELEMENT CLASS  
            (ClassName, (ClassAttribute)*, (ClassMethod)*)> 
 
<!ELEMENT ClassName (#PCDATA)>     
<!ELEMENT ClassAttribute (#PCDATA)>  <!-- instance var. -->     
<!ELEMENT ClassMethod (#PCDATA)>  <!-- method signature -->    
  
<!ATTLIST ClassName Abstract CDATA #REQUIRED>   
                 <!-- "Yes" if abstract, "No" otherwise --> 
<!ATTLIST ClassAttribute Type CDATA #REQUIRED>  
 <!-- datatype of attribute/instance var. e.g. "double" -->  
] > 

Figure 4.2 



 

Software Engineering II  Page 11 of 20  

A1(a)  "bookwork"     [3] 
• Encapsulation                                                                                              [1] 
• Polymorphism                                                                                              [1]
• Inheritance                                                                                                   [1]
 
A1(b)  "bookwork"       [2] 
Some Object Oriented languages like Smalltalk demand that every new class is a 
subclassed from an existing class in the overall class hierarchy. This has the 
advantage that the class at the root of the hierarchy provides a common protocol 
shared by every class e.g. print state, inspect state, list sub/super-classes. The 
new subclasses may then override the inherited methods if required. The 
disadvantage is that every program includes a collection of core classes which 
makes the binary bigger. 
 
The C++ language has been designed so as not to demand the absorption of new 
classes into an existing class hierarchy which leads to the advantage that the 
resultant binaries are smaller [1].  The disadvantage is that in not being able to 
inherit a common protocol requires that encapsulation is intentionally broken, in 
order to allow some classes access to the otherwise private/protected class 
members. In C++ this is done through friend functions [1]. Typically, friend 
functions are added to a class protocol in order that the I/O stream classes may 
display state information. 
 
A1(c)  "bookwork"       [2] 
Advantage [1] Disadvantage [1] 
many iterations of short sequential 
stages, resulting in a process of 
constant updating and revisiting of 
previous models and clarifying 
requirements as we proceed e.g. like 
doing a jigsaw or crossword.  

it is harder to track and time project 
stages as there might be many 
iterations and stages feed to earlier 
and later stages 

parallel development of the 
requirements subsets (reducing 
complexity and scope), final product 
integrates all the subsets.  

the final integration of the subsets 
requires careful organisation 

tests defined and developed at each 
stage 

subsets need careful planning and are 
based on importance and risk factors 

slicing up the requirements encourages 
reuse.  

 

early feedback and partial deliverables 
reduces the risk of solving the wrong 
problem.  

 

 



 

Software Engineering II  Page 12 of 20  

A1(d)  "bookwork/new computed example"   [4] 
Tangible        [0.5] e.g. Exam paper, Answer script, pen, desk…               [0.5] 
Role              [0.5] e.g. Invigilator, Examiner, Examinee                             [0.5]
Event            [0.5] e.g. Exam                                                                      [0.5] 
Organisation [0.5] e.g. Department, College, University                             [0.5]
A1(e)  "bookwork"       [4] 
A Qualified Association is often used to select a unique object from the set of 
objects linked to one object e.g. to select a Member (from the set of members) 
given a membership code [1]. It adds precision to a design document [1]. Without 
qualified associations it is necessary to spell out the definition of an association 
in the glossary. e.g. College has Member is one-to-many, becomes 
College+collegeIdentifier has Member is one-to-one. 
 
The property accountNo has been moved out of Account into the qualification, 
putting more information into the model and less into the glossary. It is also 
required during design to map from an object identity to a value identity. [2] 
 

                        
A1(f)  "bookwork/new computed example"   [2] 
Coupling is a measure of the dependency between classes resulting from 
collaboration between objects to provide a service. It is desirable to have low 
coupling between classes, which means that one class is not too dependent on 
another, which leads to less maintenance and facilitates reuse. In the context of 
Y2K, a class to handle dates could have been unplugged and replaced with an 
updated version.                                                                                                  [1] 
 
Cohesion is a measure of how strongly related and focussed the responsibilities 
in a class are. It is desirable that a class exhibit high cohesion, which leads to 
less maintenance and facilitates reuse. In the context of Y2K, the existence of a 
Date class would have narrowed the focus compared with scrutinising vast 
quantities of monolithic code.                                                                               [1] 
A1(g)  "bookwork/new computed example"   [3] 
(i) Dataflow e.g. pre-processor -> C++ compiler -> C compiler -> assembler -> 
linker                                                                                                                    [1] 
(ii) User-Interface                                                                                                 [1] 
(iii) The palettes of the Visual Component Library contain components (i.e. 
classes)                                                                                                                [1]



 

Software Engineering II  Page 13 of 20  

A2(a)  "new computed example"     [4] 
If the program user enters a numeric value, the code in the try block is executed 
which results in the legend "Good input" appearing in the title bar of the window.  
                                                                                                                             [2] 
If the program user enters a non-numeric value, the code in the catch block is 
executed which results in the legend "Bad input" appearing a message box.     [2]
 
 
A2(b)  "new computed example"     [6] 
class Filter { 
    protected:                                       [0.5] 
        double getF0(void);                          [0.5] 
        virtual double getQ(void);                   [0.5] 
        virtual ComplexImpedance transfer(void)=0;   [0.5] 
        double resistor; 
        double capacitor; 
        double inductor; 
}; 
class BandpassFilter : public Filter{                [0.5] 
  public:                                            [0.5] 
    double getQ(void);                               [0.5] 
};                      
class LowpassFilter : public Filter { };             [0.5] 
Filter *f;                                             [1] 
f = new BandpassFilter(10.0, 0.001, 100.0); 
f = new LowpassFilter(10.0, 0.001, 100.0)              [1] 
 
 
A2(c)  "new computed example"     [ 6] 
• The program reuses a Standard Template Library class for the complex 

number ADT                                                                                              [1] 
• Since it is a STL class its data members are template classes              [1] 
template <class A> class Component {                    [1] 
  public: 
    Component(A r, A i) : z(r,i) { }                  [0.5] 
    complex<A> series(Component z1)  {etc …}          [0.5] 
    complex<A> parallel(Component z1){etc …}          [0.5] 
    complex<A> potDiv(Component2 z1) {etc …}           
  private: 
    complex<A> z;                                     [0.5] 
}; 
double freq = 100/(2.0*M_PI), angFreq = 2.0*M_PI*freq; 
Component <long double> zR (100.0, 0.0);              [0.5] 
Component <float> zL(0.0, 1.0*angFreq);               [0.5] 
Component <double> zC(0.0, -1.0/(0.001*angFreq));      



 

Software Engineering II  Page 14 of 20  

A2(d)  "bookwork/new computed example"   [4] 
Since C++ allows a class to inherit from multiple classes, it is theoretically 
possible that two or multiple superclasses might have identical members 
inherited from a common grandparent. If the member has been overriden in the 
parent classes then the scope-resolution operator enables specification of a 
specific class and member e.g. LandVehicle::getMaxSpeed() 
 
If the member is not  
over-ridden in the  
parent superclasses  
then to access the  
member of the  
grandparent the  
parent classes must  
be defined as virtual  
e.g. 
 
 
 
class Student{ }; 
 
class IseStudent: public virtual Student{ }; 
 
class EeeStudent: public virtual Student { };   
 
class YearGroup: public IseStudent, EeeStudent { }; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• description of problem                                                                                 [2] 
• uml diagram                                                                                                 [2]



 

Software Engineering II  Page 15 of 20  

A3(a)  "new computed example"     [6] 
 

 
 
 
 
 
 
 
 
 
 
 
 
Classes [1],  Associations [1],  Multiplicites [2], Generalisations [2] 
 
A3(b)  "new computed example"     [2] 
 
three Use Case's                                                                                           3x[0.5]
system boundary required since system will be implemented in software        [0.5]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A3(c)  "new computed example"     [3] 
 
1. inclusion of the orchestrating instance which is responsible for initiating each 

use-case i.e. dynamic behaviour                                                                    [1]
2. navigation of associations can only be determined after consideration of 

dynamic behaviour                                                                                         [1] 
3. methods can only be determined after consideration of dynamic behaviour [1] 
 



 

Software Engineering II  Page 16 of 20  

A3(d)  "new computed example"     [5] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Objects [2], Messages[2], Message answers[1 ] 
 
 
A3(e)  "new computed example"     [4] 
 
 
 
 
 
 
 
 
 
 
 
Classes [1], Generalisation [1], Association [2] 
 



 

Software Engineering II  Page 17 of 20  

 
A4(a)  "bookwork"       [4] 
 
A design pattern is a simple and elegant design that captures a general solution 
to a general problem [1] (i.e. not domain specific) that has been developed over 
time and is widely applied and accepted as current "best practice".                   [1] 
name:        Decorator (or Wrapper)                                                             [1] 
problem:    when additional properties and/or behaviour are to be added 
dynamically on an instance by instance basis. For example, subclassing from 
Text for all permutations of Bold, Italic, Underline etc… would be clumsy. The 
decorator pattern should be transparent and nestable so that the decorator can 
be decorated.                                                                                                       [1] 
 
        OR 
 
name:         Observer                                                                                           [1] 
problem:     in a small system, the object with the changed state can send 
messages to its dependents to inform of the state change. However, it is not 
always logical for an object to know details about all its dependents. The 
Observer pattern is used when there is a one to many dependency between 
objects, such that if there is a state change for a particular object, a number of 
other objects need be notified. For example, if a file is created in a MS-Console 
window it is reasonable to expect an MS-Explorer display of the same folder to 
instantly include the new file. These two applications should be de-coupled so 
MS-Explorer should be registered as an dependent of the directory details 
(Model).                                                                                                                [1] 
 
        OR 
 
name:         Adaptor [1] 
problem:     enables classes to collaborate with one another even though they 
have incompatible interfaces. Converts an interface into another interface as 
expected by a client. For example, a WWW browser could have an adapter for 
specific languages e.g. Cantonese.                                                                     [1] 
 



 

Software Engineering II  Page 18 of 20  

 
A4(b)  "bookwork"       [4] 
a) the Client-Server model is the most prevalent architecture and uses 

message passing e.g. an email/web/name server. Two programs 
communicate via a protocol, which is driven by the messages passed 
between the two programs. Usually a program sending a message receives a 
response and then acts on the response accordingly. 

 
b) Other architectures are based upon the Object Model which is growing in 

popularity due to the growth in popularity of OO in general. The emerging 
architectures include: 

 
1. Distributed object which is based on communication between objects 

via message (i.e. calling methods), where the underlying communication 
and transport mechanisms, and the object locating process, are hidden 
from the application.  This requires a distributed object framework e.g. 
CORBA, RMI, DCOM 

2. Event-based uses code to monitor events e.g. a user-interface 
monitor events such as a button click. An event that causes a change of 
state triggers activity in the monitoring software. In a Server-Push 
application bus architecture (e.g. a stocks and shares tracker), listener 
objects would be registered with the bus, and monitor the bus for events in 
the form of objects that trigger processing in their domain. An early user of 
this technology  was www.Pointcast.com that pushes out breaking news to 
its subscribers when it happens 

3. Tuple-spaces are persistent object stores known as spaces. Clients 
access the spaces via a strict API, allowing concurrent access to the 
stored objects, which they copy, update and then return to the store.  

 
All of the above is just to make a "teaching point" so this level of detail is not 
expected for the answer. Expect mention of: 
• relationship between abstraction and performance 
• underlying details e.g. sockets, ports etc… 
• client-server comparison with object model 
• example of high/low abstraction                                                                  [4] 
 
e.g. The client-server architecture reveals the underlying network details e.g. 
sockets, serversockets, ports, protocol etc… The object model based 
architectures (i.e. distributed object, event-based and tuple-spaces) incrementally 
reveal less and less of the underlying network. The price to pay for increased 
abstraction is performance overhead, so that tuple spaces is easy to use due to 
its high level of abstraction but at the cost of the slowest performance. 
Abstraction and performance are inversely proportional.                                           
 



 

Software Engineering II  Page 19 of 20  

A4(c)  "new computed example"     [4] 
 



 

Software Engineering II  Page 20 of 20  

A4(d)  "bookwork/new computed example"   [8] 
 
Advantages:                                                                                                         [3] 
• UML CASE tools can exchange UML data   
• Compilers can read UML data directly 
• Compilers can generate UML documents from source code 
• XML is language neutral and can generate code in any suitable language 
• Design Patterns can be loaded into initial code editors  
• etc… 
<!-- XML data for the Filter CLASS --> 
<CLASSDEFINITION>                                       [1]  
 
<CLASS> 
  <ClassName Abstract="YES"> Filter </ClassName>        [1]  
  <ClassAttribute Type="double"> 
                           Resistor </ClassAttribute> [0.5] 
  <ClassAttribute Type="double">  
                          Capacitor </ClassAttribute> [0.5] 
  <ClassAttribute Type="double">  
                           Inductor </ClassAttribute> [0.5]  
 
  <ClassMethod>  
       getF0(void):double </ClassMethod>              [0.5] 
  <ClassMethod>  
       getQ(void):double </ClassMethod>               [0.5]  
  <ClassMethod>  
       transfer(void):ComplexImpedance </ClassMethod> [0.5]  
</CLASS>  
    
</CLASSDEFINITION> 
 

 


