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QUESTION ONE
Here is the type definition for a binary tree of strings.

TTree = "TNode;
TNode
record

Node : string;

Left : TTree;

Right : TTree;
end;

To answer the following questions, you can assume the existence of access procedures for
the type TTree called Empty, Left, Right, and Root with the obvious meanings.

a) Write a Pascal function that takes a binary tree and returns the difference between the
number of nodes in its left sub-tree and the number of nodes in its right sub-tree. For
example, given the tree of Fig. 1 below, the function would return 2, since there are 5
nodes in the left sub-tree and 3 in the right sub-tree.

[6]

John

Fred Fred

Ma i
ry Yasmin Brian Mary

George Phil
Fig. 1

b) Write a Pascal function that returns the height of a binary tree. This corresponds to the
number of nodes in the longest branch of the tree from root to leaf. For example, the
height of the tree in Fig. 1 is 4, the longest branch being the one that stretches from John
to Phil (or George).

(7]

¢) A binary tree is symmetrical if its left sub-tree is a mirror image of its right sub-tree.
For example, the tree in Fig. 1 above is not symmetrical. But the tree in Fig. 2 below is
symmetrical.

Continued on next page
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George Phil Phil George
Fig. 2

Write a Pascal function that takes a binary tree and returns True if the tree is symmetrical

and False if it is not.
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QUESTION TWO

Consider the following Pascal program. (Note: the function sgrt (x) returns the square
root of x, and the function round (x) rounds x to the nearest integer.)

program Compute;
const n = 100;
var
i, j : integer;
A : array [1l..n] of boolean;
begin
// Initialise array
for i := 1 to n do
begin
A[i] := true;
end;
// Fill in array
for i := 2 to round(sqgrt(n)) do
begin
o= 2 * i;
while j <= n do
begin
A[j] := false;
J o= 3+ 1i;
end;
end;
end.

a) Simulate the first three iterations of the second for loop, and show the contents of the
first 15 elements of the array A after each iteration. (You can abbreviate true to T and

false to F.)

(8]
b) What does the program do? Explain how it does it?

(8]

c) Suggest one way of improving the efficiency of the program.

(4]
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QUESTION THREE

Here is the Pascal type declaration for a dynamic linked list of real numbers.

type
TList
TLink =
record

~“TLink;

First : real;
Rest : TList;

end;

a) Write a function Middle that takes a TList and returns the real number half way
along that list. In other words, if the list is of length N, your function must return the N/2th
element of the list. (If the list has an odd number of elements, return the (N+1)/2th
element.) Use the following method. Count the number of elements N in the list, then start
from the beginning of the list again and work along it until the N/2th element is reached.

(9]

b) Write a second version of Middle that uses the following method. Starting from the
beginning of the list, work along it maintaining two pointers. The first pointer advances
one element at a time, and the second pointer advances two elements at a time. When the
second pointer reaches the end of the list, the first pointer will point to the element
required.

[9]

¢) In terms of loop iterations and/or recursive calls, which function is most efficient, and
by how much? Explain your answer.

(2]
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QUESTION ONE

a)

function Difference(T : TTree): integer;

begin
Difference :=
Abs (Count (Left (T) - Count (Right(T)));
end;
function Count (T : TTree): integer;
begin

if T = Empty

0
Count (Left (T)) + Count(Right(T));

then Count
else Count

1

end;
function Height (T : TTree): integer;
begin
if T = Empty
then Height := 0
else begin
L := Height(Left(T));
R := Height (Right (T));
if L > R
then Height := L + 1
else Height := R + 1;
end;
end;

function Symmetrical (T : TTree): boolean;

begin
if (T = Empty) or Mirrors (Left(T),Right(T))
then Symmetrical := true
else Symmetrical := false;

end;
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function Mirrors(Tl, T2 : TTree): boolean;
var F : boolean;
begin

if (Tl = Empty) and (T2 = Empty)
then Mirrors := true
else begin

F := Mirrors(Left(T1l),Right(T2)};
Mirrors :=

F and Mirrors{(Right (T1l),Left (T2));
end;
end; '

-,V.\\\
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QUESTION TWO

a)

1 2 3 4 5 6 7 8 9 10 |11 |12 |13 |14 |15
T T T T T T T T T T T T T T T
T T T F T F T F T F T F T F T
T T T F T F T F F F T F T F F
T T T F T F T F F F T F T F F

b) The program computes the first 100 prime numbers (using a simple version of the
sieve of Eratosthenes). When the program terminates, the ith element of A will be true if i
is a prime number and false if it isn’t. Initially all the elements of A are true (first for
loop). The second for loop knocks out successive multiples of the natural numbers (by
setting the corresponding element in A to false). First it eliminates multiples of 2, then
multiples of 3, and so on. The algorithm only needs to go as far as multiples of vn to get

all the primes up to n.

¢) The second for loop can be made more efficient by including a check to see whether
Ali] is false. If so, all multiples of i will already be false, so there’s no need to execute the

while loop.

for i := 2 to round(sgrt(n)) do
begin

if Af{i] = true

then begin

j o= 2 * 1i;
while j <= n do
begin
Alj] := false;
j o= 3 + i;
end;

end;
end;



QUESTION THREE
a)

function Middle(L : TList): real
var N, M : integer;
begin

N := Length(L);

if N mod 2 = 0

then N := N div 2
else N := (N+1) div 2;
if N <> 0
then begin
M := 1;
while M <> N do
begin
I, := L”.Rest;
M := M+1;
end;
Middle := L”~.First;
end

else Middle

1l

0;
end;

function Length(L : TList): integer;
begin

if L = nil

then Length 0

else Length := Length(L”.Rest) + 1;

end ;
b)

function Middle(L : TList): real;
begin
if L = nil
then Middle
else begin
Ptr := L".Rest;
while Ptr <> nil and Ptr”.Rest <>nil do

I
(@)

begin
Ptr := Ptr”.Rest”.Rest;
L := L".Rest;

end;

Middle := L".First;

end;
end ;



¢) The second function is more efficient. For a list of length n, it will execute n/2 iterations
of the while loop. The first function executes n recursive calls to Length plus n/2 iterations

of the while loop. So the first function will take around three times as long.
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