Paper Number(s): E2.7

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2000

EEE PART II: M.Eng., B.Eng. and ACGI

PRINCIPLES OF COMPUTERS AND SOFTWARE ENGINEERING
Friday, 16 June 2000, 2:00 pm

There are FIVE questions on this paper.

There are two sections. Answer THREE questions including at least ONE
question from each section.

Use a separate answer book for each section.

This is an open book examination.

Time allowed: 2:00 hours

Corrected Copy

Examiners: Dr M.P. Shanahan, Mr P.Y.K. Cheung, Dr J.V. Pitt

SECTION A

Use a separate answer book for each section

1. a) Write Pascal type definitions for a binary tree of linked lists of integers.
[4 marks]

b) Using the type definitions from Part (a), write a function called Largest that takes a tree
and returns the largest integer it contains. You may assume a function Max(X,Y) that
returns the greater of the two integers X and Y, and that all the integers in the tree are
positive.

[8 marks]

c) Modify the type definition from Part (a) so that the length of each list in the tree is
recorded along with the list. Using this modified data type, write a procedure MakeTree
that takes two.sub-trees T1 and T2 and a list of integers L and returns the following tree.

L

/N

T1 T2

Make sure that the new length field is maintained.
[8 marks]

Page 1 of 5 E2.7

2. Here is the Pascal type declaration for a dynamic linked list of strings.

type
TList = ~TLink;
TLink =
record
First : string;
Rest : TList;
end;

a) The function member is supposed to take a string S and a list L and return true if S
occurs in L but false otherwise. What is wrong with the following attempt to write this
function? How will the function behave if called with S = “Fred” and L =

[“Mary” ,
*John”1? How will it behave given the input S = “Mary” and L = [“Mary”,
“John” 17
function member{S : string; L : TList): boolean;
var Found : boolean;
begin
Found := false;
while (L~.First <> S) and (L <> nil) do
begin
if L”.First = S
then Found := true
else L := L”.Rest;
end;
member := Found;
end;
[7 marks]

b) Here’s another attempt at the same function. What’s wrong with this one? How will it
behave given the same inputs as for part (a)?

function member(S : string; L : TList): boolean;

begin
if L <> nil
then begin
repeat
L := L”.Rest;
until (L = nil) or (L".First = S);
end;
member := L <> nil;
end;

[7 marks]

¢) Write two working versions of the member function - one using recursion, and one

without recursion.

[6 marks]

Page 2 of 5 E2.7

SECTION B
Use a separate answer book for each section

All data values and addresses are given in hexadecimal and answers are expected in this
format.

3. The following program, in ARM assembly language, is loaded into memory starting at the
address 0x00008080.

1. ;
2. AREA progl, CODE, READONLY .
3. SWI_Exit EQU &11 ; system call to exit
4. ENTRY
5. ADR rl, stk_ptr
6. LDR rl3, [rl]
7. LDR r0, [rl, #4]
8. BL SUB1
9. SWI SWI_Exit ; end of execution
10. ;
11. stk_ptr DCD 0x80£f0
12. const DCD 0x335577aa
13. ;
14. ; Subroutine SUBL
15. ;
16. SUBL STMED r13!,{rl,rl4}
17 EOR rl, r0, r0, ROR #16
18 BIC rl, rl, #0xf£0000
19 MOV r0, r0, ROR #8
20. EOR r0, r0, rl, LSR #8
21. LDMED xr13!, {rl, pc}
22. END
a) List the values of all the labels: SWI_Exit, stk_ptr, const, SUBL.
[3 marks]
b) State and justify the contents of registers r0, rl, r13 and r14 immediately after
the BL instruction (line 8) is completed.
[5 marks]
<) Draw a diagram showing the contents of the stack immediately after the STMED
instruction is completed.
[3 marks]
d) List the values of registers 0, r1, r13 and r15 after the processor steps through
each instruction in the subroutine SUB1.
[7 marks]
e) What function does SUB1 perform?
[2 marks]

Page 3 of 5 E2.7

The subroutine divi0 takes a 32-bit unsigned integer v in r0 and divides it by 10. It returns
the quotient v/10 in r0 and the remainder in r1. This subroutine is already written and is

available for use.

a) Using the subroutine divio or otherwise, write a subroutine utoa in ARM assembly
language to convert a 32-bit unsigned integer into its equivalent decimal representation as
a string of ASCII characters,, “For example, the number 0x0000£££f is converted to the
ASCII string “000006553,652

6~ ~ 7

On entry to the subroutine utoa, r0 contains the 32-bit unsigned integer to be converted,
r1 points to a 10-byte buffer in memory where the resulting ASCII string is to be stored.
The least significant digit is stored in the lowest memory address.

[7 marks]

b) Write a program to test the subroutine utoa by converting the number 0x0000£f£££, and
writing the ASCII string to the console window. You may assume that the system call
SWI_WriteC is available.

[7 marks]

¢) Modify your subroutine in a) so that leading ‘0’ characters are stored as space characters.

[6 marks]

Page 4 of 5 E2.7

a) Table 1 compares the cache architecture of two competing microprocessors:

Table 1: Comparison of cache architecture of two processors

Features Processor K (500MHz) Processor P (500MHz)
L1 cache e on-chip, full-speed e on-chip, full-speed
e 32kb direct-mapped instruction | ® 16kb direct-mapped instruction
cache cache
e 32kb write-back, dual-port | e 32kb write-through, 2-way set
direct-mapped data cache associative data cache
L2 cache e on-chip, half speed * on-chip, full-speed

e 256kb unified, 4-way set- | e 128kb unified direct-mapped cache
associative cache

L3 cache o off-chip, at 100MHz front-side | ® none
bus speed, unified direct-
mapped

Compare and contrast these two microprocessors based on the information given in Table 1.
[10 marks]

b) Explain briefly any THREE of the following features of a bus bridge and memory
controller circuit for interfacing between a microprocessor and the PCI bus:
1) Supports up to five PCI masters
ii) Zero wait state PCI master and slave burst transfer
1i1) PCI to system memory data streaming up to 132Mbyte/sec
iv) Symmetric arbitration between host and PCI bus
v) Complete programmable interrupt priorities of PCI modules
[6 marks]

c) Explain the purpose of Translation L.ook-aside Buffers (TLBs) in a Memory Management
Unit. What is the implication on system performance if TLB is not present?

[4 marks]

Page 5 of 5 E2.7

L
E;21~ - y/Z\r\Q\pLE_x o Ceenyru Tee §

!J(A‘fl co

SeFTWANRE Ew b EERIWE

Solution to Question 1

a)

type
TList
TLink =
record
First : integer;
Rest : TList;
end;

~TLink;

TTree = "“TNode;

TNode =

record
Node TList;
Left TTree;
Right : TTree;

end;

b)

function Largest(T : TTree): integer;
var X, Y, Z @ integer;
begin
if T = nil
then Largest := 0
else begin
X := Largest(T".Left);
Y := Largest(T~.Right);
7 := MaxInList(T".Node);
Largest := Max (X,Max (Y, 2)) ¢
end;
end;
function MaxInList (L : TList): integer;
begin
if L = nil
then MaxInList := 0
else MaxInList := Max(L".First,
MaxInList(L”.Rest));
end;

c)

TTree becomes
type
TTree = "TNode;
TNode =
record
Node : TList;
Lngth : integer;
Left : TTree;
Right : TTree;
end;
function MakeTree (L : TList; T1,T2 : TTree): TTree;
var T : TTree;

begin
N := Length(L);
new(T) ;
T~ .Left = T1l;
T~.Right = T2;
T"~.Node := L

T~.Ingth := Length(L);
end;

2 veoo

[4 marks]

[8 marks}

I8 marks]

\
-~
7

function Length(L :
begin

if L = nil

then Length :=

0
else TLength := Length(L".Rest) + 1;
end;

TList) : integer;

Solution to Question 2

a)

[7 marks]

(not Found) and (L. <> Empty) should be (L <> Empty) and (not Found). As it stands,
the function will crash if S doesn’t occur in L, because it will call First(L) with L = nil.
So with S = “Fred” and L = [“Mary”, “John”], function will crash. With S = “Mary” and

b)

L = [“Mary”, “John”], function works fine and returns true.

[7 marks]

Function misses out first element of list, because repeat loop doesn’t check condition until

after loop executed.

So with S = “Fred” and L = [“Mary”, “John”], function works fine and returns false. With
S = “Mary” and L = [“Mary”, “John”], function also returns false, incorrectly.

Non-recursive version:

function member (S :

string; L :

[6 marks]

TList): boolean;

var Found : boolean;
begin
Found := false;
while (L <> Empty) and (mot Found) do
begin
if First(L) = S
then Found := true
else L := Rest(L):;
end;
member := Found;
end;
Recursive version:
function member(S : string; L : TList): boolean;
begin
if L = Empty
then member := false
else if First(L) = S
then member := true

else member :
end;

member (S, Rest (L)) 7

Solution to Question 3

This question tests students’ ability to walk-through a simple assembly language program
with good understanding of: addressing modes, stack operations, assembly language syntax,
arithmetic operations, function of the barrel-shifier, subroutine calls etc..

a)
SWI_exit =0x11
stk_ptr = 0x00008094
const = 0x00008098
SUB1 = 0x0000809¢
b)
r0 = 0x335577aa contains the input value to this subroutine
rl = 0x00008094 initialized in the main program to this value
rl3 = 0x000080{0 stack pointer which is intialized to this value
rl4 = 0x00008090 contains the return address
c)
The stack looks like this:
Addr Value
0x000080f0 0x00008090
0x000080cc 0x00008094
rt3 ————- -> 0x000080e8 (previous value — unchanged)
d)

This shows contents of registers AFTER each instructions:

Instr ro rl
STMED 335577aa 00008094
EOR - 44ff44FF
BIC - 4400eeff
MOV aa335577 -
EOR aal75533 ~
LDMED - 00008094

c)

This subroutine reverses the byte order of the 32-bit number passed through r0.

rl3
000080e8

000080f£0

rlb
000080a0
000080a4
000080as8
000080ac
000080b0
00008090

[3 marks]

[S marks]

[3 marks]

|7 marks]

[2 marks]

J\¢

Solution to Question 4

@

A\

[7 marks]
; Subroutine utoa
utoa STMED r13!, {rl-r3, rl4} ; save all used registers
MOV rz, rl ; r2 = puffer address
MOV r3, #10 ; do 10 times
loop
BL divlo ; r0 = r0/10, remainder in ril
ADD ri, rl, #'0" ; convert remainder into ascii
STRB rt, [r2], #1 ; store in buffer, update pointer
SUBS r3, r3, #1
BNE _loop ; end do
ILpMED r13t, {rl-r3, pc} ; pop and return
(b)
[7 marks]
AREA prog2, CODE, READONLY
SWI_WriteC EQU 0
SWI_Exit EQU &11 ; finish program
ENTRY
ADR ri, const
1DR ro0, [rll, #4 ; fetch value and rl -> str_buf
BL utoa
ADD rl, rl, #9 ; rl points to MSD
MOV r2, #10
loop LDRB r0, [xl], #-1 ; output character
SWI SWI WriteC
SUBS r2, r2, #1
BNE loop
SWI SWI_Exit ; end of execution
const DCD OxQ000ffff
str_buf % 10 ; reserve 10 bytes of storage
(c)
[6 marks]-
; Subroutine utoa
utoa STMED rl3t, {rl-r4, ril4} ; save all used registers
MOV r2, rl ; r2 = pbuffer address
MOV r3, #10 ; do 10 times
MOV rd, #1 ; r4d = 0 means done!
~loop
BL diviQ ; r0O = r0/10, remainder in ri
CMP rd4, #O ; if r4=1,
ADDNE rl, rl, #'0° ; convert remainder intoc ascii
MOVEQ rl, #' ° ; else store space
STRB rl, [r21, #1 ; store in buffer, update pointer
CMP r0, #0 ; 1f quotient = 0,
MOVEQ r4, #0 H ... £4=0
SUBS r3, r3, #1
BNE _loop ; end do
LDMED rl3!, {rl-r4, pc} ; pop and return

.\rh\
N

Solution to Question 5

This question is mostly book work, but students are expected to understand the concept and
apply them to features found in commercially available processors and chip-sets.

(a)

[10 marks]
L1 cache:
Both on-chip, full-speed means that both processors will operating very efficiently if data is in
L1 cache.

Proc-K has more instruction cache, therefore will enjoy better hit rate than Proc-P.

The 32kb dual-port direct-mapped data cache of Proc-K may not be as efficient as the 32kb 2-
way set-associative data cache.

Write-back cache is important and much better than the write-through cache of Proc-P.

L2 cache:
Proc-K has larger L2 cache, but slower speed. Therefore it has higher miss penalty if L1
cache missed.

The full-speed L2 cache of Proc-P means that the smaller L1 cache is less significant.
Unfortunately. Proc-P used a direct-mapped cache which is less cffective than the 4-way sci-
associative cache of Proc-K.

L3 cache:

Proc-K has L3 cache at a reasonable speed. Therefore L2 cache miss does not incur the full
cost of reading from DRAM.

Proc-P has no L3 cache, therefore L2 miss will cost. Therefore although L2 cache 1s fast, it is
likely to have lower performance than Proc-K.

(b)

[6 marks]

1) Five separate PCI slots, each can have an I/O module that arbitrate for the
control of the bus.

i) Transfer between PCI master and anther PCI module acting as slave can
proceed with effectively one data word per clock cycle more or less
continuously.

111) PCI bus can transfer data directly to main memory at full-speed without the
interference of the processor (via DMA).

1v) Neither a module on the PCI bus acting as bus master, nor the microprocessor
(called the host) can monopolise any of the buses at the exclusion of others.

V) All the PCI modules can be programmed to have different interrupt prioritics.

It implies that a central interrupt priority arbitration is used instead of daisy
chaining.

(c)
[4 marks]

TLBs are caches for the address page tables which is used by the MMU to translate logical
addresses into physical addresses. If TLB 1s not present, each memory reference involve at
least two memory access: the first to read the translation address (which is then used to
compute the physical address), and the second perform the actual memory read/write. This 1s
obviously very inefficient. Therefore without TLB, not virtual memory or memory
management can be used.

.
=

