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1. The figure shows a mass-spring system. The coefficients K, D, and M represent,
respectively, the spring constant, the damping coefficient and the mass. The signal
u(t) represents an externally applied force and y(t) the displacement of the mass
from its rest position.

(a) By considering the balance of forces on the mass, derive the differential

equation relating u(t) to y(t). (2]

(b) Derive a state-variable model

[4]
(¢) Determine the transfer function relating u to y. [4]

(d) Set M =1 and suppose that u(t) is a unit step input applied at ¢ = 0. Derive
the values of K and D so that the following design specifications are satisfied:

i. The displacement of the mass y(t) settles to its steady state value in the
least time without oscillation.

ii. The settling time is 4 seconds.

For these values of K and D, evaluate the steady state value of y(2). [10]

(Hint: You may take the settling time to be four times the time constant
associated with the rate of decay of responses.)
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2. Consider the feedback system below for the speed control of 2 DC motor. The
shaft drives a load with inertia J and is connected to a tacho generator. Here,
v,(t) is the reference voltage, i,(t) and R, are the armature current and
resistance, respectively, v(t) is the tacho voltage, w(t) is the shaft speed and E(t)
is the generated EMF. Assume that the current through R is much smaller than
that through R, and:

e The field flux is constant so that that E(t) is proportional to w(t) and the
developed torque, T(t), is proportional to i,(¢). Take the constant of
proportionality to be the same and equal to k..

o The power op-amp has negligible output impedance and dynamics and large
input impedance and gain, so we can make the ‘virtual earth’ assumption.

o Torque disturbances and friction are negligible.
e The tacho voltage is proportional to speed with proportionality constant k.

In parts (a), (b) and (c) below, all references are to Laplace transforms of signals.

(a) Derive the transfer function G(s)=w(s)/ia(s). (3]
(b) Derive an expression for i,(s) in terms of v.(s) and w(s). [3]

(c) Hence, derive and clearly draw a block diagram representation of the
feedback loop. Take the reference signal to be —v,(s) and the output signal
to be w(s). Indicate clearly the signals vy(s) and 7,(s) on the block diagrani%]

(d) Set Ry=R3= R, =J=k.=k;=1. Suppose that v (t)=—V,t >0 where V is
constant. Derive the values of V and R; so that

i. The steady-state value of the shaft speed is equal to 1.
ii. The shaft speed settles to within £:2% of its steady-state value in 4
seconds. R

[8]

Page 2 of 5 Paper E2.6/ISE2.9



3. Consider the feedback loop in the figure below. Here

and

1'/
K(s) = Kp+ —L
S

is a PI compensator where K7 and Kp are design parameters.

(a) Derive the range of values of K; and Kp for which the closed loop is stable.

(b) For this part, take K7 = 0.

i Derive the value of Kp so that the closed loop is marginally stable.

ii. For this value of Kp, derive the steady-state value of the output y(t) for
a unit impulse reference signal r(t).

[6]

(c) For this part, take Kj # 0. Derive the values of K; and Kp so that the
following design specifications are satisfied:

i. The closed loop is marginally stable.

ii. The response y(t) to a unit impulse reference input r(t) is oscillatory

with the frequency of oscillation being 1 radians per second. (10]

Kp + [—gL > G(s) -
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4. Consider the feedback loop in the figure below. Here

1

Gls) = (s +4)(s +5)

and K'(s) is a compensator.

(a)

(b)

Take K(s) = k where k > 0 is a constant gain. Draw the root-locus
accurately as k varies in the range 0 < k < oo. [4]

Suppose that

S —z

$—Pp

K(s)=k

is a phase-lag compensator where the compensator zero z and pole p are
design parameters. Design a stabilizing controller K (s) as follows:

i. Choose the pole p so that lim r(t) — y(t) = 0, when r(t) is a step
reference signal.

ii. Choose the zero z so that for all k£ > 0 the closed loop system has at least
one pole whose real part is to the right of —1 and at least one pole whose
real part is to the left of —4. (8]

For the values of z and p designed in Part (b), draw the root-locus of the
compensated system
s—z

(s —p)(s+4)(s+5)

as k varies in the range 0 < k < co. Your answer should include the centre
and angles of the asymptotes and the real-axis intercepts.

(Hint: for the real-axis intercepts, you might find it useful to use the fact that
the polynomial P(s) = s + 6s% + 9s + 10 has a real root at —4.492.) 8]

r(s) y(s)
K{(s) > G(s) -

Page 4 of 5 Paper E2.6/ISE2.9



5. Consider the feedback control system in the figure below. Here,

and K(s) is the transfer function of a feedforward compensator.

(a) Sketch the Nyquist diagram of G(s), clearly indicating the low and high
frequency portions, as well as the real-axis intercepts. (4]

(b) Set K(s) = K, a constant compensator. Give the number of unstable closed
loop poles for all (positive and negative) K. (4]

(c) Take K = 1. Determine the gain margin. (4]

(d) Without doing any actual design, briefly describe how a PI compensator,

K
K(s)= Kp+ 2L
S

would improve the steady-state tracking properties without deteriorating the
stability margins. 8]

r(s) y(s)

Page 5 of 5 Paper E2.6/1SE2.9



SOLUTIONS (E2.6/ISE2.9, Control Engineering, 2003)

(a) Applying Newton’s laws on the mass,

u(t) = Mij(t) + Dy(t) + Ky().

(b) Take z,(¢) = y(t) and z5(t) = y(t). Then,

] = g gl [ e

i = [ro][ =]

(¢) Taking the Laplace transform of the differential equation relating u(t) to y(¢),

(s°M +sD + K)y(s) = u(s) = |G(s)= y(zg — M +1sD i

(d) Setting M = 1 and comparing the transfer function (i(s) with the standard

second order form

! K 1 wh
T Ksf4sD+ K K+ 2Cwn s + wz

G(s)

It follows that w, = VK and ¢ = 2% The first specification demands ¢ = 1

for critical damping while the second demands Cw, = 1. It follows that
w, = 1 and so {K =1land D =2. ‘ The steady state output is simply G/(0)

which is % and so




)

L.

(a)

z

=

3
The developed torque is T'(t) = kei,(t) and the generated EMF is

E(t) = kw(t). Since friction is negligible and all the developed torque is
supplied to the load, we have that T'(¢) = Ju(t) or kei,(t) = Juw(t). Taking
Laplace transforms (assuming zero initial conditions),

G(s)=

k|mw
03.

Making the virtual earth assumption: R"}%’ig) + ktzgt) + v;_gl = 0, since

v((t) = kawo(t) and since it is assumed that the current through R; is much
smaller than that through R,,. Taking Laplace transforms and rearranging,

iofs) = g (—vr(s)) = piy—ie(s)

Using the last equation and the expression for G(s), the block diagram
becomes,

—v,(s) ia(s) w(s)
—>R1/R3Rm

%I?r
[V} D

R]/RQRm < vt(S) kt <t

Putting in the numbers, the block diagram simplifies to
% 1a(8)

e
| R

It follows that the closed loop transfer function is given by

1
H(s) = ———
(b) 1 + S/R]
and the steady state value is V. So |V = 1.| The settling time is four time
constants and is therefore 4R;. So |R; = 1.




(a)

(b)

(c)

Taking

(% \\VA

],’ ],’ I,r
K(s)= Kp+ % = —X—P%rl

gives the closed loop characteristic equation as

Kps+ Kj

|4 2T
+s(32+5—1)

=0=s+s°+(Kp—1)s+ K =0.

The Routh array is then

§3 1 Kp—1
52 1 Kr
s | Kp—Kr—1

]\'7[

For stability, we require no sign changes in the first column. Thus the closed
loop will be stable for |7\’1 >0and Kp > K7+ 1.\

i. The closed loop system is marginally stable when all the elements of a
row of the Routh array are equal to zero and all the other elements in the
first column have the same signs. When K = 0, K(s) = Kp and the
Routh array becomes

52 1 [X’p —1
s 1 0
1 [\"p —1

For marginal stability we require .

ii. For this value of Kp, the closed loop transfer function is

1

]‘[(S) = m

The steady-state response to a unit impulse is

limsH(s) = 1.

s—0

If k', # 0, marginal stability occurs when K >0 and Kp = K7+ 1. The
auxiliary polynomial is given by s> + K7 and it follows that the frequency of

oscillations is given by /A and so Thus



4.

(a) The root-locus plot is shown below.

.,\\r
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(b) 1. For zero steady-state error against a step reference signal, we need an

integrator in the loop so

ii. The requirements are satisfied by since one branch of the root
locus will be to the right of —1 and another to the left of —4.

(¢) The root-locus of the compensated system is shown below. The centre and
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angles of the asymptotes are F: —4 &Y= :i:QOil For the real axis

intercepts, we search for real roots of %K(S)G(s) =0 or

s34 652+ 9s + 10 = 0, which has a real root at | —4.492 | according to the hint

in the question.



5. (a) The Nyquist plot, together with the unit circle centred on the origin is shown

below. The real-axis intercepts can be found by setting the imaginary part of
(i/(jw) to zero. This gives intercepts at jw; =0, +v/3, 00| and it follows that

G(jw;) = 1,—0.125,-0.125,0.

(b) The number of unstable closed loop poles associated with gain K can be
determined by the number of encirclements by G/(s) of the point —71; Thus

0 < k<8 = no unstable poles
E>8 = 2 unstable poles

—1<k<0 = no unstable poles
k< —1 = 1 unstable pole.

(¢) Since the intercept with the negative real axis is at —1/8 the
Igain margin is 8. ‘

(d) The PI compensator can be written as

s
. I+ ==
K(s) = Kp+ 2 = g D1/Er
s s
and is a special form of phase-lag compensation. It has high gain at
frequencies below wy = K;/Kp and gain close to K'p beyond wo. The phase is
negative and large below wy but insignificant above. [t follows that by
varying K and Kp we can use Pl compensation to increase low frequency
gain (hence improving tracking properties) without introducing phase-lag at
high frequency (which would reduce the phase margin) by placing wo in the
‘middle’ frequency range.

Nyquist Diagrams
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