PROBLEM 1

(a) The following are the impulse responses of discrete-time LTI systems. Determine whether each system is causal and/or stable. Justify your answer.
(i) $h[n]=\left(\frac{1}{2}\right)^{n} u[n]$
(ii) $h[n]=(0.6)^{n} u[n+2]+(0.5)^{n} u[-n]$
(iii) $h[n]=2^{n} u[3-n]$
(b) Consider the first-order difference equation

$$
y[n]+2 y[n-1]=x[n]
$$

Assume the condition of initial rest. This means that if $x[n]=0$ for $n<n_{0}$, then $y[n]=0$ for $n<n_{0}$. Find the impulse response of a causal system whose input and output are related by this difference equation. Assume that $x[n]=0$ for $n<0$.

PROBLEM 2

(a) Let $x[n]$ be a discrete periodic signal with period N whose Fourier series coefficients are a_{k} with period N. Determine the Fourier series coefficients of the signal $y[n]=x[n]-x[n-1]$.
(b) Let

$$
g[n]= \begin{cases}1, & 0 \leq n \leq 5 \\ 0, & 6 \leq n \leq 7\end{cases}
$$

be a periodic signal with fundamental period $N=8$. Determine the Fourier series coefficients of the signal $g[n]$.
(c) Consider the signal $w[n]=g[n]-g[n-1]$ with $g[n]$ as defined in (b).
(i) Determine the Fourier series coefficients of the signal $w[n]$ using the definition.
(ii) Determine the Fourier series coefficients of the signal $w[n]$ using the result of (a).

Use the relationship $\sum_{i=0}^{N-1} x^{i}=\frac{1-x^{N}}{1-x},|x| \leq 1$.

PROBLEM 3

The output $y(t)$ of a causal LTI system is related to the input $x(t)$ by the differential equation

$$
\frac{d y(t)}{d t}+2 y(t)=\frac{d x(t)}{d t}+x(t)
$$

Determine the frequency response of the system and then find and sketch its Bode plots.

PROBLEM 4

(a) Consider a continuous time LTI system. Prove that the response of the system to a complex exponential input $e^{s_{0} t}$ is the same complex exponential with only a change in amplitude; that is $H\left(s_{0}\right) e^{s_{0} t}$. The function $H(s)$ is the Laplace transform of the impulse response of the system.
(b) A causal LTI system with impulse response $h(t)$ has the following properties:

1. When the input to the system is $x(t)=e^{t}$ for all t, the output is $y(t)=\frac{11}{12} e^{t}$.
2. When the input to the system is $x(t)=e^{2 t}$ for all t, the output is $y(t)=\frac{7}{10} e^{2 t}$.
3. The impulse response $h(t)$ satisfies the equation

$$
h(t)=a e^{-3 t} u(t)+b e^{-2 t} u(t)
$$

where a, b are unknown constants.
Determine the response $H(s)$ of the system, consistent with the information above. The constants a, b should not appear in your answer.
Use the fact that the Laplace transform of the function $h(t)=e^{-a t} u(t)$ is $H(s)=\frac{1}{s+a}, \operatorname{Re}\{s\}>-a$.

PROBLEM 5

(a) Find the analytical expression and the region of convergence (ROC) of the z transform of the discrete causal signal $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$, with $u[n]$ the discrete unit step function.
Use the relationship $\sum_{n=0}^{+\infty} x^{n}=\frac{1}{1-x}$, if $|x|<1$.
(b) Consider the causal LTI system with input $x[n]$ and output $y[n]$ related with the difference equation

$$
y[n]-y[n-1]+\frac{1}{4} y[n-2]=x[n]-\frac{1}{2} x[n-1]
$$

(i) Determine the z-transform of the impulse response.
(ii) Determine the z-transform of the output if $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$.

Answer 1

(a) (i) $h[n]=\left(\frac{1}{2}\right)^{n} u[n]$. The system is causal since $h[n]=0$ for $n<0$ and stable since $\lim _{n \rightarrow+\infty} h[n]=0$.
(ii) $h[n]=(0.6)^{n} u[n+2]+(0.5)^{n} u[-n]$. The system is non-causal because of the term $(0.5)^{n} u[-n]$ and non-stable since $\lim _{n \rightarrow+\infty} h[n]=+\infty$.
(iii) $h[n]=2^{n} u[3-n]$. The system is non-causal and stable since $\lim _{n \rightarrow+\infty} h[n]=0$.
(b) Consider the first-order difference equation $y[n]+2 y[n-1]=x[n] \Rightarrow y[n]=-2 y[n-1]+x[n]$. From this we get

$$
\begin{aligned}
& y[0]=-2 y[-1]+\delta[0]=1 \\
& y[1]=-2 y[0]=-2 \\
& y[2]=-2 y[1]=(-2)(-2)=4 \\
& y[3]=-2 y[2]=-6 \\
& \vdots \\
& y[n]=(-2)^{n}, n \geq 0 \Rightarrow y[n]=(-2)^{n} u[n]
\end{aligned}
$$

Answer 2

(a) The signal $x[n]$ is written using the Fourier series representation as follows:

$$
x[n]=\sum_{k=\langle N\rangle} a_{k} e^{j k \omega_{0} n}=\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n}
$$

From the above we have

$$
x[n-1]=\sum_{k=\langle N\rangle} a_{k} e^{j k \omega_{0}(n-1)}=\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N)(n-1)}=\sum_{k=\langle N\rangle} e^{-j k(2 \pi / N)} a_{k} e^{j k(2 \pi / N) n}
$$

Thus,

$$
y[n]=x[n]-x[n-1]=\sum_{k=\langle N\rangle}\left(1-e^{-j k(2 \pi / N)}\right) a_{k} e^{j k(2 \pi / N) n}
$$

Hence, the Fourier series coefficients of the signal $y[n]=x[n]-x[n-1]$ are

$$
b_{k}=\left(1-e^{-j k(2 \pi / N)}\right) a_{k}
$$

(b) The Fourier series coefficients of the signal $g[n]$ are given by

$$
a_{k}=\frac{1}{N} \sum_{n=\langle N\rangle} g[n] e^{-j k(2 \pi / N) n}=\frac{1}{N} \sum_{n=0}^{7} g[n] e^{-j k(2 \pi / N) n}=\frac{1}{8} \sum_{n=0}^{5} e^{-j k(\pi / 4) n}=\frac{1}{8} \frac{1-e^{-j k(3 \pi / 2)}}{1-e^{-j k(\pi / 4)}}
$$

(c) (i) The signal $w[n]$ is also periodic with period $N=8$ and is given by

$$
\begin{aligned}
& w[0]=g[0]-g[-1]=1 \\
& w[1]=g[1]-g[0]=0 \\
& w[2]=g[2]-g[1]=0 \\
& w[3]=g[3]-g[2]=0 \\
& w[4]=g[4]-g[3]=0 \\
& w[5]=g[5]-g[4]=0 \\
& w[6]=g[6]-g[5]=-1 \\
& w[7]=g[7]-g[6]=0
\end{aligned}
$$

The Fourier series coefficients of the signal $w[n]$ are given by
$b_{k}=\frac{1}{8} \sum_{n=0}^{7} w[n] e^{-j k(\pi / 4) n}=\frac{1}{8}\left(1-e^{-j k(3 \pi / 2)}\right)$
(ii) According to the result of Part (a) and provided that the Fourier series coefficients of the signal $g[n]$ are given by

$$
a_{k}=\frac{1}{8} \frac{1-e^{-j k(3 \pi / 2)}}{1-e^{-j k(\pi / 4)}}
$$

the Fourier series coeffic ients of the signal $w[n]$ are given by

$$
b_{k}=\left(1-e^{-j k(\pi / 4)}\right) \frac{1}{8} \frac{1-e^{-j k(3 \pi / 2)}}{1-e^{-j k(\pi / 4)}}=\frac{1}{8}\left(1-e^{-j k(3 \pi / 2)}\right)
$$

Answer 3

We first have to find the frequency response of the system.
From $\frac{d y(t)}{d t}+2 y(t)=\frac{d x(t)}{d t}+x(t)$ if we take the Fourier transform in both sides we get $Y(j \omega)[(j \omega)+2]=X(j \omega)[(j \omega)+1] \Rightarrow H(j \omega)=\frac{Y(j \omega)}{X(j \omega)}=\frac{j \omega+1}{j \omega+2}$. You can treat this function easily since for the Bode plots of $H(j \omega)$ you need to find the Bode plots of the functions $j \omega+1$ and $j \omega+2$ and subtract them.

Answer 4

(a) The output of the system $y(t)$ is given as the convolution between the input of the system $x(t)=e^{s_{d}}$ and the impulse response $h(t)$. This will be

$$
y(t)=\int_{-\infty}^{+\infty} x(t-\tau) h(\tau) d \tau=\int_{-\infty}^{+\infty} e^{s_{0}(t-\tau)} h(\tau) d \tau=e^{s_{0} 0_{0}} \int_{-\infty}^{+\infty} e^{-s_{0} \tau} h(\tau) d \tau=e^{s_{0} t} H\left(s_{0}\right)
$$

where $H(s)$ is the Laplace transform of the impulse response given by $H(s)=\int_{-\infty}^{+\infty} e^{-\Omega \tau} h(\tau) d \tau$ evaluated at $s=s_{0}$.
(b) The Laplace transform of the impulse response $h(t)=a e^{-3 t} u(t)+b e^{-2 t} u(t)$ is $H(s)=\frac{a}{s+3}+\frac{b}{s+2}, \operatorname{Re}\{s\}>-2$. According to the information provided we have that $H(1)=\frac{11}{12}$ and $H(2)=\frac{7}{10}$. We form the system of equations:

1. $H(1)=\frac{a}{4}+\frac{b}{3}=\frac{11}{12}$
2. $\quad H(2)=\frac{a}{5}+\frac{b}{4}=\frac{7}{10}$

From (1) and (2) we have $a=1, b=2$. Thus,

$$
H(s)=\frac{1}{s+3}+\frac{2}{s+2}=\frac{3 s+8}{(s+3)(s+2)}, \operatorname{Re}\{s\}>-2
$$

Answer 5

(a) Consider the function

$$
x[n]=\left\{\begin{array}{cc}
\left(\frac{1}{2}\right)^{n} & n \geq 0 \\
0 & n<0
\end{array}\right.
$$

The z-transform expression is

$$
\begin{aligned}
& X(z)=1+\left(\frac{1}{2}\right) z^{-1}+\left(\frac{1}{2}\right)^{2} z^{-2}+\left(\frac{1}{2}\right)^{3} z^{-3}+\ldots=1+\left(\frac{1}{2} z^{-1}\right)+\left(\frac{1}{2} z^{-1}\right)^{2}+\left(\frac{1}{2} z^{-1}\right)^{3}+\ldots \Rightarrow \\
& X(z)=\frac{1}{1-\frac{1}{2} z^{-1}},\left|\frac{1}{2} z^{-1}\right| \leq 1
\end{aligned}
$$

(b) (i) By taking the z-transform in both sides of the input-output relationship we end up with the following expression for the z-transform of the system.

$$
Y(z)-z^{-1} Y(z)+\frac{1}{4} z^{-2} Y(z)=X(z)-\frac{1}{2} z^{-1} X(z) \Rightarrow \frac{Y(z)}{X(z)} \Rightarrow H(z)=\frac{1}{1-\frac{1}{2} z^{-1}},\left|\frac{1}{2} z^{-1}\right| \leq 1
$$

(ii) $Y(z)=H(z) X(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)^{2}},\left|\frac{1}{2} z^{-1}\right| \leq 1$

