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E2.5

i.
Consider the cascade interconnection of three linear time invariant (LTI) systems, illustrated in the
following Figure 1. The impulse response A,[n] is
hy[n]=uln]-uln-1},

where u[n] is the discrete unit step function defined as
1, n=0
ufn]= .
0, otherwise

The overall impulse response is as shown in Figure 2.

x[p] —> m|n] hn} h.[n-3] —» ]
Figure 1
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[10]

(a) Find the impulse response A [n].

(b) Find the convolution .
uln—c ]*uln—c,]
where u[n] is the discrete unit step function defined above and ¢, ¢, are constant parameters.
(10]
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E2.5

(a) Consider the continuous signal x(f) that is periodic with period T and fundamental frequency

2z . . .
o, =—— . Suppose that the Fourer series coefficients of x(¢) are ¢, .
T

(i) Find the Fourier series coefficients of the signal x*(¢).
(2]

(ii) Find the Fourier series coefficients of the signal x(-¢).

2]
(b) Let x(¢) be a periodic signal whose Fourier series coefficients are
1, k=0
c. = |&]
k - ](;) , otherwise
(1) Is x*(¢) real?
3]
(ii) Is x*(#) odd?
131
(iii) Is x(—t) real?
3]

()

Justify your answers.

The Parseval’s relation for a discrete time periodic signal x[n] is given by the following
expression

1 2 2
3.5 = 3 bl

where N is the period of the discrete signal x[n], c, are the Fourier series coefficients of x[n]

and n= (N ) indicates that n varies over a range of N successive integers. Suppose that we are
given the following information about x[#n]:

1. x[n] is a real and even signal. In that case the Fourier series coefficients ¢, of x{r] are also"

real an even.
x[n] has period 10 and Fourier coefficients c, .

3. ¢, =3.
s, L s x[n]" =50.
10 n=(10)
Using the Parseval’s theorem with —1< n <8 find the Fourier series coefficients ¢, of x[n].

(7
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E2.5

2
3

(a) State the advantages that the Bode plots offer in terms of characterizing a frequency response.
[51]

(b) The output y(z) of a continuous, causal LTI system is related to the input x(¢) by the differential

equation
d’y(®) ,  dy() dx(1)
+6——=+9y(1)= +2x(t
dt* dt 0= X0
Determine the frequency response of the system, then find and sketch its Bode plots. Justify your
answers.

[15]
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4.
(a)

(b)

(d)

E2.5

Consider the signal w(¢) with Laplace transform W(s). Find the analytical expression of the
Laplace transform of the signal w(t—1;), where t, is a constant parameter.
Consider the signal z(z) with Laplace transform Z(s). Find the analytical expression of[lti!xe
Laplace transform of the signal z(at), where a is a constant parameter.
(4]
Consider a signal y(¢t) which is related to two signals x,(z) and x,(t) by
()= x(t —=2) * x,(~t +3)

=2t ~3r

where x(t)=e™“u(t) and x,(t)=e

transform Y (s) of y(z).

u(t) . Determine the analytical expression of the Laplace

[10]
The system function of a causal Linear Time Invariant system is
s+1
H(s)=—5——
sP 42542

Determine the analytical expression of the Laplace transform of the output when the input is
x(t) =e 'u(t) +e'u(~t) .

The function u(t) is the continuous unit step function defined as

® (1, 120
u =
iQ t<0

[5]
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E2.5

S

(a) Consider a discrete time Linear Time Invariant system. Find the response of the system to the

input z,", as a function of the z transform of the impulse response of the system. z, is a constant,
generally complex number.

(7]

(b) Suppose that we are given the following information about a Linear Time Invariant system:

I, If the input to the system is x,{n]= [%j u[n], then the output is

a2 o]

2. If the input to the system is x,[n]=(~1)", then the output is

uln]

where a is a real number.

7 n
y,lnl= Z(_ 1)

The function u[n] is the discrete unit step function defined as

(1, n=0
uln]l=
10, n<0

Determine the analytical expression of the z transform of the impulse response of the system
H(z) . consistent with the information above. There should be no unknown constant in your
answer; that is, the constant @ should not appear in your answer.

[13]
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I.
() The impulse response h,[n] is hy[n] =u[n]—u[n—1]=8na]. This means that h,[n—3]=d[n—-3].
Morcover. his[n}= hy[n~3]=d[n]=o[n—3]=0[n—-3]
We cull the overall impulse response with Afn], and this is equal to
hnl=0[n]+40|n—11+80[n—2]+100[n—3]1+80[n—-4]+46[n—-5]+[n—6]. From this and
Ii.ln —3]=0[n—3] we obtain that
In]=h{n+3]=0ln+3]+48[n+2]+8[n+1]+108[n]+ 8 n—1]+40[n - 2]+ 6[n - 3]

n] — ) h,[n]

hy[n] o -3 | — vin]

A 4

Figure 1
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(10]
(b) Find the output of the overall system to the input u[n—c¢, | *uln—c,].
uln—c 1*un—c,]=n—-c,—c, +Duln—c, —c,|
[10]

S

() Consider the continuous signal x(r) that is periodic with period T and fundamental frequency
2 . . . .
w, = - Suppose that the Fourier series coefficients of x(¢) are ¢, .

(i) Find the Fourier series coefficients of the signal x'(1).



(h

(c)

foo

V(= e e M In that case the Fourier series of x"(r) are ¢, .
b oo

[2]

(11} Find the Fourier series coefficients of the signal x(—r) .

== Y ¢ " In that case the Fourier series of x(—t) are C oy
Fou—

[2]

Let x(7) be a periodic signal whose Fourier series coefficients are
[ 1, k=0
- ] Il“
‘1— /[?j , otherwise
(1) Is v (1) real? The Fourier series of x'(¢) are

( I, k=0

=1 (1]
: 1_/— , otherwise
1"\3

o (W oW e (1Y
In that case x (1) =1+ Z 1(; A iy ](—%— e/“”"'+z_j(;j et =
J 1 o

k =—oa
J |
=+ . ¢ //\(Unf o /l\(q,/ -
ZI:./K 3 j 3

k|
bo 1 .
=1+Y 2_/(;j cos(jka,r) . It is NOT real.
| .-

(3]
(11} Is v (1) odd? No, according to the above it is EVEN.
[3]

(1) ls v(—r) real? The Fourier series of x(—t) are
1, k=0

C :% 1 k‘
g ‘ —Jl =1 , otherwise
| 3

3 R oo | .
In that case x(—t)=1+ Z [~ S Z _I[? et +Z—j(; et =

k=—oo 1

| & e | k|
=]+ Z L j — jkeyt ;_ /(;j ¢ Jheoyt et

I&]
=1+> - 2_/[%] cos(kayt) . It 1s NOT real.
! N

[3]
The Parseval’s relation for a discrete time periodic signal x{n] is given by the following
expression

| 7
— > knl = X e
N ”:<N>‘ k(w)‘ {

where N s the period of the discrete signal x[n], ¢, are the Fourier series coefficients of x{n]

and = <N> indicates that n varies over a range of N successive integers. Suppose that we are
given the following information about x[n] :



I x{n] is a real and even signal. In that case the Fourier series coefficients ¢, of x[n] are also
real an even.
x{n] has period 10 and Fourier coefficients ¢, .

12

3. ¢, =5.Fromthis we get ¢, =c¢_, =5.
I >
-— > ] =50.
10 n <Il)>‘ ‘

Using the Parseval’s theorem with —1< 7, <8 find the Fourier series coefficients ¢, of x[n].
XL | , 8 8 )

S =50+ +(7(f +Z(7,\2, =50> (75 —FZ(:Az =0=>c¢,=0andc¢; =0,i=2,....8
! 2 2

[71

(1) State the advantages that the Bode plots offer in terms of characterizing a frequency response.
Multiplication becomes addition for both amplitude and phase.
Division becomes subtraction for both amplitude and phase.
(5]
(b)y The output v(r)of a causal LTI system is related to the input x(¢) by the differential equation
dv(1) dx(1) jw+2

d7v(r) .
—— 4+ 0 +9v(iN=—"—+2x(H=>H(jw) =
i ar o U= )

Determine the frequency response of the system, then find and sketch its Bode plots. [15]

Bode Diagrams

e

Phase (deg); Magnitude (dB)

Frequency (rad/sec)




4.
(a)

()

Consider the signal w(r) with Laplace transform W(s). Find the analytical expression of the
Laplace transtorm of the signal w(r —¢,) ., where ¢, 1s a constant.

Thisis ¢ "W(s) The Laplace transform of the function x(r—1,) is given by

[wir=1)e Ydr=e 77 [w(t—t)e” TV d(t—t) =W (s)

o0

with W(s) the Fourier transform of the signal w(r).

(1]

Consider the signal z(r) with Laplace transform Z(s). Find the analytical expression of the
Laplace transtorm of the signal z(ar), where a is a constant.

The Laplace transform of the function x(ar) is given by [x(at)e "dt = |

—oo —oo

we use the transformation «r = u then we get the following.
If @20 then t 5 e0=>u—e0 and 1 > —e0 >y — —oo.

1 ~iZtan
—x(at)e ¢ d{at). If
a

LN
—Jj—u

= i = . . .
In that  case [ —x(at)e ¢ d(an)= [ —x(u)e “ du and since a is positive
. A el

o Ry <] 7/'Lu
[ —xtne @ du= [ —=x(ue @ du.

A (l‘

a<Othen 1 Doy ——o and r 5 —o = u >,

—o0

. \ .
| ,/i((,,) | - j=u | —j=u . .
In that case [ —x(at)e “ d(at)= [ =x(we @ du=-[—x(u)e “ du and since a is
-l La e
) o — ity | — it | — ity
negative ~= [ —x(u)e ¢ du= [ —x(u)e ¢ du= [ —x(u)e ¢ du.
L Ce—d S ‘a‘

Hence, the Laplace transform of the signal x(ar) 1s —X(l) with X (s) the Laplace transform of
[4)

g

the signal x(1) .

(4]

Consider a signal v(r) which is related to two signals x, (1) and x,(z) by
(1) =x,(t =2)* xy(—1 +3)

where v (1) =¢ 7 u(r)y and X, (1) = ¢ "u(t) . Determine the Laplace transform Y (s) of y(1).

The Laplace transform of x, (1) =e " u(1) is l
S+

The Laplace transform of x,(1—2) is ¢ l
s+

The Laplace transform of x, (1) is

The Laplace transform of x, (=) 1s .
- —y+3

oy
The Laplace transform of x, (= +3)=x,[—(r=3)] 15 ¢ o ey
—

o Y |
Yis)=¢ - +et
s—=2 —5+3




[10]
(d) The system tunction of a causal Linear Time Invariant system is
s+1
H(s)=—5—"=
sT+25+2
Determine the Laplace transform of the output when the input is x(r) = e u(r) + e'u(—t) .
| 1

X)) = ] - [ The Laplace transform of the output is H(s)X (s)
N+ s —

[5]

5.
() Consider a discrete time Linear Time Invariant system. Find the response of the system to the

mput z," . as a function of the z transform of the impulse response of the system. z, is a constant,

generally complex number.

k=-+eo k=Heo ,
If we call the output yin] then v[(n]= 3 x[n—kJhlk]=z," Zh[k]z(fA =z, H(zy)
- k= oo
[7]
(h) Suppose that we are given the following information about a Linear Time Invariant system:
o : 1y .
. i the input to the system 1s x[n] :(?] u[n], then the output is
0O
] " l 11‘1
vinl={a = | +10/ = | | uln]
2 3 ]
where « is a real number.
| 1
X (2)=—.]¢>—
l L 6
6
+10)—(5+ 57!
,, P o S+)z I
Y= I + ] = ] l ‘2\ >5
IR B P [— =y = o
5 37 ( ;¢ X1 37 )
2] 1 ] 1
Y (2) [(a+10)—(5+—)z Jl——z")
Furthermore, H (7)== 3 6
Xi(2) (=L ha-ta)
2" 3"
2. If the input to the system is x,[1n]=(=1)", then the output is
7 i
v, [n]=—1{-1
waln=2(=1)
From 2. we know that H(-1) = % = a=-9, so that
|
=2z —=2")
Hio) = | "
T I
==z ) (l-—z
{ > ) 3 )
[13]



