7.

(a) Assume a separated harmonic solution in the form: $y(x, t)=X(x) \exp \left(j \omega_{0} t\right)$

Substitute into the wave equation to get:

$$
\mathrm{d}^{4} \mathrm{X} / \mathrm{dx}^{4}=\mathrm{k}^{4} \mathrm{X}
$$

Where:
$\mathrm{k}^{4}=\omega_{0}{ }^{2} \rho \mathrm{~A} / \mathrm{EI}$
Substitution shows that $\mathrm{X}(\mathrm{x})=\mathrm{A} \sin (\mathrm{kx})+\mathrm{B} \cos (\mathrm{kx})+\mathrm{C} \sinh (\mathrm{kx})+\mathrm{D} \cosh (\mathrm{kx})$ is a solution to the ODE.
(b) For a beam built in at one end and free at the other, the boundary conditions are:

No deflection or slope at the LH end, so $y=0(1), d y / d x=0(2)$ at $x=0$
No moment or shear force at the RH end so $d^{2} y / d x^{2}=0(3) ; d^{3} y / d x^{3}=0(4)$ at $x=$ L

Differentiating:
$\mathrm{X}^{\prime}(\mathrm{x})=\mathrm{Ak} \cos (\mathrm{kx})-\mathrm{Bk} \sin (\mathrm{kx})+\mathrm{Ck} \cosh (\mathrm{kx})+\mathrm{Dk} \sinh (\mathrm{kx})$
$\mathrm{X}^{\prime \prime}(\mathrm{x})=-\mathrm{Ak}^{2} \sin (\mathrm{kx})-\mathrm{Bk}^{2} \cos (\mathrm{kx})+\mathrm{Ck}^{2} \sinh (\mathrm{kx})+\mathrm{Dk}^{2} \cosh (\mathrm{kx})$
X "' x) $=-\mathrm{Ak}^{3} \cos (\mathrm{kx})+\mathrm{Bk}^{3} \sin (\mathrm{kx})+\mathrm{Ck}^{3} \cosh (\mathrm{kx})+\mathrm{Dk}^{3} \sinh (\mathrm{kx})$
Applying the boundary conditions:
$\mathrm{BC} 1: \mathrm{B}+\mathrm{D}=0$ so $\mathrm{D}=-\mathrm{B}$
$\mathrm{BC} 2: \mathrm{A}+\mathrm{C}=0$ so $\mathrm{C}=-\mathrm{A}$
BC3: $-\mathrm{A} \sin (k L)-B \cos (k L)+C \sinh (k L)+D \cosh (k L)=0$
BC4: $-\mathrm{A} \cos (\mathrm{kL})+\mathrm{B} \sin (\mathrm{kL})+\mathrm{C} \cosh (\mathrm{kL})+\mathrm{D} \sinh (\mathrm{kL})=0$
Substituting equations 5 and 6 into equations 7 and 8 , we get:
$\mathrm{A}\{\sin (\mathrm{kL})+\sinh (\mathrm{kL})\}+\mathrm{B}\{\cos (\mathrm{kL})+\cosh (\mathrm{kL})\}=0$
$\mathrm{A}\{\cos (\mathrm{kL})+\cosh (\mathrm{kL})\}-\mathrm{B}\{\sin (\mathrm{kL})-\sinh (\mathrm{kL})\}=0$
Combining equations (9) and (10) to eliminate B , we get:
$\mathrm{A}\{2+2 \cos (\mathrm{~kL}) \cosh (\mathrm{kL})\}=0$
Equation (11) can then be written as:
$\cos (\beta) \cosh (\beta)=-1 \quad$ where $\beta=k L$
Now, $k^{4}=\omega_{0}^{2} \rho A / E I$, so $\omega_{0}=k^{2} \sqrt{ }\{E I / \rho A\}=(\beta / L)^{2} \sqrt{ }\{E I / \rho A\}$
(c) If $\cos (\beta) \cosh (\beta)=-1$, then numerical solution gives:

$\boldsymbol{\beta}$	$\boldsymbol{\operatorname { c o s } (\boldsymbol { \beta })}$	$\boldsymbol{\operatorname { c o s h }}(\boldsymbol{\beta})$	$\boldsymbol{\operatorname { c o s }}(\boldsymbol{\beta}) \boldsymbol{\operatorname { c o s h }}(\boldsymbol{\beta})$
2.000	-0.4161	3.762	-1.565
1.800	-0.2272	3.107	-0.706
1.900	-0.3233	3.418	-1.105
1.880	-0.3043	3.353	-1.020
1.870	-0.2947	3.321	-0.979
1.875	-0.2995	3.337	-0.999

Hence, to reasonable accuracy, $\beta=1.875$ and $\beta^{2}=3.52$

For the silicon beam:
$\mathrm{A}=2 \times 100 \times 10^{-12}=2 \times 10^{-10} \mathrm{~m}^{2}$
$\mathrm{I}=\mathrm{bd}^{3} / 12=100 \times 2^{3} \times 10^{-24}=8 \times 10^{-22} \mathrm{~m}^{4}$
$\mathrm{E}=1.08 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
$\rho=2330 \mathrm{~kg} / \mathrm{m}^{3}$
$\checkmark\{\mathrm{EI} / \mathrm{\rho A}\}=0.013616 \mathrm{~m}^{2} / \mathrm{s}$
$\omega_{0}=(\beta / \mathrm{L})^{2} \sqrt{ }\{\mathrm{EI} / \mathrm{\rho A}\}=\left(3.52 / 10^{-6}\right) \times 0.013616=47,928 \mathrm{rad} / \mathrm{s}$
$\mathrm{f}_{0}=\omega_{0} / 2 \pi=7,628 \mathrm{kHz}$
8.
(a) Gravitational force depends on volume, and hence scales as $\mathrm{O}\left[\mathrm{L}^{3}\right]$. Elastic force might be exemplified by the force provided by a cantilever spring. In this case, $F=k x$, where x is the end displacement, the stiffness is $k=3 E I / L^{3}, E$ is Young's modulus, and $\mathrm{I}=\mathrm{bd}^{3} / 12$ is the second moment of a rectangular beam of breadth b and depth d . Combining, we obtain $\mathrm{F}=\mathrm{Exbd}^{3} / 4 \mathrm{~L}^{3}$, which scales as $\mathrm{O}\left[\mathrm{L}^{2}\right]$.

Surface tension acts on the perimeter of a liquid surface, and hence scales as O[L].

Gravitational force $\left(\mathrm{O}\left[\mathrm{L}^{3}\right]\right)$ versus elastic force $\left(\mathrm{O}\left[\mathrm{L}^{2}\right]\right)$ Gravity must eventually overcome elastic force as size increases. There is therefore an upper limit to the size of self-supporting structures. In contrast, gravitational force becomes relatively insignificant compared to elastic force as size reduces, e.g. to the microstructure size domain.

Gravitational force $\left.\left(\mathrm{O}_{\mathrm{L}} \mathrm{L}^{3}\right]\right)$ versus surface tension force (O[L]) Surface tension must eventually overcome gravitational force as size reduces. An application lies in surface tension driven self-assembly of microstructures.

Elastic force $\left.\left(\mathrm{O}^{2} \mathrm{~L}^{2}\right]\right)$ versus surface tension force (O[L]) Surface tension must eventually overcome elastic force as size reduces. One important consequence is the collapse of suspended microstructures in the drying step that follows sacrificial layer etching.
(b) The expressions for beam radius and phase-front curvature have simple approximations in the near- and far-field regimes:
$\left(\mathrm{w} / \mathrm{w}_{0}\right)^{2}=\left\{1+\left(\mathrm{z} / \mathrm{z}_{0}\right)^{2}\right\}$ reduces to $\mathrm{w} / \mathrm{w}_{0} \approx 1$ for $\mathrm{z} \ll \mathrm{z}_{0}$ and $\mathrm{w} / \mathrm{w}_{0} \approx \mathrm{z} / \mathrm{z}_{0}$ for $\mathrm{z} \gg \mathrm{z}_{0}$ The beam radius is therefore roughly constant in the near field, increasing linearly in the far field.

Beam waist
$\mathrm{R}=\mathrm{z}\left\{1+\left(\mathrm{z}_{0} / \mathrm{z}\right)^{2}\right\}$ reduces to $\mathrm{R} \approx \infty$ for $\mathrm{z}\left\langle<\mathrm{z}_{0}\right.$ and $\mathrm{R} \approx \mathrm{z}$ for $\mathrm{z} \gg \mathrm{z}_{0}$
Phase-fronts are therefore flat in the near field, and spherically curved in the farfield, with a centre at $\mathrm{z}=0$.

The distance z_{0} represents the transition between the near and far-field regimes

The radius of a Gaussian varies as

$$
\begin{aligned}
w^{2} & =w_{0}{ }^{2}\left\{1+\left(\mathrm{z} / \mathrm{z}_{0}\right)^{2}\right\} \\
\mathrm{w}^{2} & =\mathrm{w}_{0}{ }^{2}+4 \mathrm{z}^{2} /\left(\mathrm{k}_{0}{ }^{2} \mathrm{w}_{0}{ }^{2}\right) .
\end{aligned}
$$

Since $\mathrm{z}_{0}=\mathrm{k}_{0} \mathrm{w}_{0}{ }^{2} / 2$, we can write
Differentiating with wrt w_{0}, we get $2 \mathrm{wdw} /\left.\mathrm{dw}_{0}\right|_{\mathrm{z}=\text { const }}=2 \mathrm{w}_{0}-8 \mathrm{z}^{2} /\left(\mathrm{k}_{0}{ }^{2} \mathrm{w}_{0}{ }^{3}\right)$.
At the minimum, the RHS $=0$, so that

$$
\mathrm{w}_{0}=\sqrt{ }\left\{2 \mathrm{z} / \mathrm{k}_{0}\right\}=\sqrt{ }\{\lambda \mathrm{z} / \pi\} .
$$

The optimum beam waist radius therefore scales as $\mathrm{O}\left[\mathrm{L}^{0.5}\right]$.
9.
(a) Advantages: low insertion loss; good isolation; low power consumption; good linearity
Limitations: slow switching speed; high actuation voltage
(b)

Combination of parallel plate actuator and linear spring gives non-linear forcedisplacement curve with single maximum:

Below critical voltage Vp , there is a stable equilibrium where $\mathrm{F}=0, \mathrm{dF} / \mathrm{dg}<$ 0 .

For $\mathrm{V}>\mathrm{Vp}$, there is no equilibrium point and the bridge snaps down.

Once snap-down has occurred, V must be reduced until $\mathrm{F} \rightarrow 0$ at minimum gap.

Resulting variation of bridge height g with applied voltage exhibits hysteresis:

(c) Need to calculate $\left|S_{21}\right|^{2}$ for case where transmission line has a resistive shunt Rs:

$\mathrm{S}_{21}=2\left(\mathrm{R}_{\mathrm{s}} / / \mathrm{Z}_{0}\right) /\left[\left(\mathrm{R}_{\mathrm{s}} / / \mathrm{Z}_{0}\right)+\mathrm{Z}_{0}\right]$
$\approx 2 \mathrm{R}_{\mathrm{s}} / \mathrm{Z}_{0} \quad$ if $\mathrm{R}_{\mathrm{s}} \ll \mathrm{Z}_{0}$
and so $\left|S_{21}\right|^{2} \approx 4 R_{s}^{2} / Z_{0}{ }^{2}$ as required.

