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7.

 (a) Assume a separated harmonic solution in the form: y(x, t) = X(x) exp(jω0t)

 Substitute into the wave equation to get: d4X/dx4 = k4X

 Where: k4 = ω0
2ρA/EI

Substitution shows that X(x) = A sin (kx) + B cos (kx) + C sinh (kx) + D cosh(kx)

 is a solution to the ODE.

 [4]

 

 (b) For a beam built in at one end and free at the other, the boundary conditions are:

 No deflection or slope at the LH end, so y = 0 (1), dy/dx = 0 (2) at x = 0

 No moment or shear force at the RH end so d2y/dx2 = 0 (3); d3y/dx3 = 0 (4) at x =

L

 [2]

 Differentiating:

 X'(x) = Ak cos (kx) - Bk sin (kx) + Ck cosh (kx) + Dk sinh (kx)

 X''(x) = -Ak2 sin (kx) - Bk2 cos (kx) + Ck2 sinh (kx) + Dk2 cosh (kx)

 X'''(x) = -Ak3 cos (kx) + Bk3 sin (kx) + Ck3 cosh (kx) + Dk3 sinh (kx)

 Applying the boundary conditions:

 BC1: B + D  = 0 so D = -B (5)

 BC2: A + C = 0 so C = -A (6)

 BC3: -A sin (kL) - B cos (kL) + C sinh (kL) + D cosh (kL) = 0 (7)

 BC4: -A cos (kL) + B sin (kL) + C cosh (kL) + D sinh (kL) = 0 (8)

 Substituting equations 5 and 6 into equations 7 and 8, we get:

 A {sin (kL) + sinh (kL)} + B {cos (kL) + cosh (kL)} = 0 (9)

 A {cos (kL) + cosh (kL)} - B {sin (kL) -  sinh (kL)} = 0 (10)

 Combining equations (9) and (10) to eliminate B, we get:

 A{2 + 2 cos (kL) cosh (kL)} = 0 (11)

 Equation (11) can then be written as:

 cos(β) cosh (β) = -1 where β = kL (12)

 Now, k4 = ω0
2ρA/EI, so ω0 = k2 √{EI/ρA} = (β/L)2 √{EI/ρA} (13)

 [8]
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 (c) If cos(β) cosh (β) = -1, then numerical solution gives:

 ββ  cos(ββ)  cosh (ββ)  cos(ββ) cosh (ββ)

 2.000  -0.4161  3.762  -1.565

 1.800  -0.2272  3.107  -0.706

 1.900  -0.3233  3.418  -1.105

 1.880  -0.3043  3.353  -1.020

 1.870  -0.2947  3.321  -0.979

 1.875  -0.2995  3.337  -0.999

 Hence, to reasonable accuracy, β = 1.875 and β2 = 3.52

 [3]

 For the silicon beam:

 A = 2 x 100 x 10-12  = 2 x 10-10 m2

 I = bd3/12 = 100 x 23 x 10-24 = 8 x 10-22 m4

 E = 1.08 x 1011 N/m2

 ρ = 2330 kg/m3

 √{EI/ρA} = 0.013616 m2/s

 ω0 = (β/L)2 √{EI/ρA} = (3.52/10-6) x 0.013616 = 47,928 rad/s

 f0 = ω0/2π = 7,628 kHz

 [3]



3

8.

(a) Gravitational force depends on volume, and hence scales as O[L3].

Elastic force might be exemplified by the force provided by a cantilever spring.

In this case, F = kx, where x is the end displacement, the stiffness is k = 3EI/L3, E

is Young's modulus, and I = bd3/12 is the second moment of a rectangular beam of

breadth b and depth d. Combining, we obtain F = Exbd3/4L3, which scales as

O[L2].

Surface tension acts on the perimeter of a liquid surface, and hence scales as O[L].

[3]

Gravitational force (O[L3]) versus elastic force (O[L2]) Gravity must eventually

overcome elastic force as size increases. There is therefore an upper limit to the

size of self-supporting structures. In contrast, gravitational force becomes

relatively insignificant compared to elastic force as size reduces, e.g. to the

microstructure size domain.

[2]

Gravitational force (O[L3]) versus surface tension force (O[L]) Surface tension

must eventually overcome gravitational force as size reduces. An application lies

in surface tension driven self-assembly of microstructures.

[2]

Elastic force (O[L2]) versus surface tension force (O[L]) Surface tension must

eventually overcome elastic force as size reduces. One important consequence is

the collapse of suspended microstructures in the drying step that follows

sacrificial layer etching.

[2]

 (b) The expressions for beam radius and phase-front curvature have simple

approximations in the near- and far-field regimes:

 (w/w0)
 2 = {1 + (z/z0)

2} reduces to w/w0 ≈ 1 for z << z0 and w/w0 ≈ z/z0 for z >> z0

 The beam radius is therefore roughly constant in the near field, increasing linearly

in the far field.
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 [3]

 R = z {1 + (z0/z)2} reduces to R ≈ ∞ for z << z0 and R ≈ z for z >> z0

 Phase-fronts are therefore flat in the near field, and spherically curved in the far-

field, with a centre at z = 0.

 

z

Plane Spherical

Phase-fronts

 [3]

 The distance z0 represents the transition between the near and far-field regimes

[1]

The radius of a Gaussian varies as w2 = w0
2 {1 + (z/z0)

2}

Since z0 = k0w0
2/2, we can write w2 = w0

2 + 4z2/(k0
2w0

2).

Differentiating with wrt w0, we get 2w dw/dw0z = const = 2w0 - 8z2/(k0
2w0

3).

At the minimum, the RHS = 0, so that w0 = √{2z/k0} = √{λz/π}.

[2]

The optimum beam waist radius therefore scales as O[L0.5].

[2]
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9.
(a) Advantages: low insertion loss; good isolation; low power consumption; good

linearity
Limitations: slow switching speed; high actuation voltage

[6]
(b)
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[10]

(c) Need to calculate |S21|
2 for case where transmission line has a resistive shunt Rs:

Z0 Z0
Rs

S21 = 2(Rs//Z0)/[(Rs//Z0) + Z0]
≈ 2Rs/Z0    if  Rs << Z0

and so  |S21|
2 ≈ 4Rs

2/Z0
2  as required.

[4]


