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(b)

Assume a separated harmonic solution in the form:  y(x, t) = X(x) exp(jwot)
Substitute into the wave equation to get: d*X/dx* = k*X

Where: k* = wo’r A/EI

Substitution shows that X(x) = A sin (kx) + B cos (kx) + C sinh (kx) + D cosh(kx)
isasolution to the ODE.

[4]

For abeam built in at one end and free at the other, the boundary conditions are:
No deflection or dope at theLH end, soy =0(1),dy/dx =0(2) atx =0
No moment or shear force at the RH end so dPy/dx? = 0 (3); d®y/dx® = 0 (4) at x =
L

[2]
Differentiating:
X'(x) = Ak cos (kx) - Bk sin (kx) + Ck cosh (kx) + Dk sinh (kx)
X"(x) = -Ak? sin (kx) - Bk? cos (kx) + Ck? sinh (kx) + Dk? cosh (kx)
X"(x) = -Ak® cos (kx) + Bk® sin (kx) + Ck® cosh (kx) + Dk® sinh (k)
Applying the boundary conditions:
BC1:B+D =0soD=-B (5)
BC22A+C=0s0C=-A (6)
BC3: -A sin (kL) - B cos (kL) + C sinh (kL) + D cosh (kL) =0 @)
BC4: -A cos (kL) + B sin (kL) + C cosh (kL) + D sinh (kL) =0 (8)
Substituting equations 5 and 6 into equations 7 and 8, we get:

A {sin (kL) + sinh (kL)} + B {cos (kL) + cosh (kL)} =0 9)
A {cos (kL) + cosh (kL)} - B{sin(kL) - sinh(kL)} =0 (10)
Combining equations (9) and (10) to eliminate B, we get:

A{2+ 2 cos (kL) cosh (kL)} =0 (11)
Equation (11) can then be written as:

cos(b) cosh (b) =-1  whereb =kL (12)

Now, k* = we’r A/El, so wp = k2 ({El/r A} = (b/L)*> Y Elir A} (13)
(8]
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If cos(b) cosh (b) = -1, then numerical solution gives:

b cos(b) cosh (b) cos(b) cosh (b)
2.000 -0.4161 3.762 -1.565
1.800 -0.2272 3.107 -0.706
1.900 -0.3233 3.418 -1.105
1.880 -0.3043 3.353 -1.020
1.870 -0.2947 3.321 -0.979
1.875 -0.2995 3.337 -0.999

Hence, to reasonable accuracy, b = 1.875 and b® = 3.52

For the silicon beam:

A=2x100x 10" =2x 10" m?
| =bd*12=100x 2°x 10%* =8 x 10? m*

E =108 x 10" N/n?
r = 2330 kg/m®

A El/r A} = 0.013616 m?/s

wo = (b/L)2 {El/r A} = (3.52/10°) x 0.013616 = 47,928 rad/s

fo = Wo/2p = 7,628 kHz

[3]

[3]
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(b)

Gravitational force depends on volume, and hence scales as O[ L.

Elastic force might be exemplified by the force provided by a cantilever spring.

In this case, F = kx, where x is the end displacement, the stiffnessis k = 3EI/L3, E

is Young's modulus, and | = bd®12 is the second moment of a rectangular beam of

breadth b and depth d. Combining, we obtain F = Exbd®/4L3, which scales as

O[L?.

Surface tension acts on the perimeter of aliquid surface, and hence scales as O[L].
[3]

Gravitational force (O[L?) versus elastic force (O[L?]) Gravity must eventually

overcome elastic force as size increases. There is therefore an upper limit to the
size of self-supporting structures. In contrast, gravitational force becomes
relatively insignificant compared to elastic force as size reduces, e.g. to the
microstructure size domain.

[2]

Gravitational force (O[L®]) versus surface tension force (O[L]) Surface tension

must eventually overcome gravitational force as size reduces. An application lies
in surface tension driven self-assembly of microstructures.

[2]

Elastic force (O[L?]) versus surface tension force (O[L]) Surface tension must

eventually overcome elastic force as size reduces. One important consequence is
the collapse of suspended microstructures in the drying step that follows
sacrificia layer etching.

[2]
The expressions for beam radius and phase-front curvature have ssimple
approximations in the near- and far-field regimes:
(Wiwg) 2 = {1 + (z/z0)*} reducesto w/wg » 1 for z << zy and wiwg » 2/zo for z >> z,
The beam radius is therefore roughly constant in the near field, increasing linearly
in the far field.
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[3]
R=2z{1+ (20/2)% reducesto R » ¥ for z << zy and R » z for z>> 7
Phase-fronts are therefore flat in the near field, and spherically curved in the far-
field, with acentreat z = 0.

Phase-fronts 4‘_/\_/\
‘,\l\}\} -

Plane Spherical

z

[3]

The distance z, represents the transition between the near and far-field regimes

[1]

The radius of a Gaussian varies as w2 = we? {1+ (Z/20)%}
Since zo = kowo?/2, we can write W2 = wo? + 422 (KoPwo?).
Differentiating with wrt wo, we get 2w dw/dwol 2 = cong = 2Wo - 82%/(Ko?Wo?).
At the minimum, the RHS = 0, so that wo = [ 2z/ko} = (I z/p}.

[2]

The optimum beam waist radius therefore scales as O[L%].

[2]
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(@ Advantages. low insertion loss; good isolation; low power consumption; good
linearity
Limitations: slow switching speed; high actuation voltage

[6]
(b)
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Combination of parallel plate actuator and linear spring gives non-linear force-
displacement curve with single maximum:
F/(kgo) Below critical voltage Vp, there is a
14 stable equilibrium where F = 0, dF/dg <
V<Vp 0.

For V > Vp, there is no equilibrium
V>V, (no static =m) point and the bridge snaps down.

Once snap-down has occurred, V must
be reduced until F ® 0 at minimum gap.

Resulting variation of bridge height g with applied voltage exhibits hysteresis:
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\I/R Applied voltage V \I/P
[10]

(c) Need to calculate |Sx for case where transmission line has a resistive shunt Rs:

S = 2(RJIZ)I[(RYIZo) + Zo]
» 2RJZy if Rs<< Zg

and s0 |Sy[* » 4R Zo? asrequired.

[4]



