UNIVERSITY OF LONDON

B.ENG. AND M.ENG. EXAMINATIONS 2001

For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination for the Associateship.

PART II : MATHEMATICS 3 (ELECTRICAL ENGINEERING)

Wednesday 6th June 2001 2.00 - 5.00 pm

Answer EIGHT questions.

[Before starting, please make sure that the paper is complete; there should be 7 pages, with a total of 12 questions. Ask the invigilator for a replacement if your copy is faulty.]

Copyright of the University of London 2001

1. Consider the mapping

$$w = \frac{1}{z-i}$$

from the z-plane to the w-plane, where z = x + iy and w = u + iv.

(i) Show that, in the z-plane, the family of circles centred at (0, 1) with radius a

$$x^2 + (y-1)^2 = a^2$$

maps to another family of circles in the w-plane. What is the radius of this family and where is its centre?

- (ii) What is the image in the *w*-plane of the *x*-axis (y = 0) in the *z*-plane? Show that the curve that represents this image passes through the origin in the *w*-plane.
- (iii) Show that the family of straight lines y = cx in the z-plane with c = constant have the image in the w-plane represented by

$$\left(u - \frac{c}{2}\right)^2 + \left(v - \frac{1}{2}\right)^2 = \frac{1}{4}(1 + c^2).$$

2. By choosing a suitable contour C in the upper half of the complex plane, use the contour integral

$$\oint_C \frac{e^{iz}dz}{(z^2+4)(z^2+1)}$$

to show that

$$\int_{-\infty}^{\infty} \frac{\cos x \, dx}{(x^2+4) \, (x^2+1)} = \frac{\pi}{6} \left(\frac{2e-1}{e^2}\right) \, .$$

PLEASE TURN OVER

3. (i) Show that if C is a circle of arbitrary radius r centred at the origin, then the value of the complex integral

$$\oint_C \frac{dz}{z}$$

is independent of r. What is this value?

(ii) Use the Residue Theorem to show that

$$\oint_C \; \frac{z \, dz}{(z-1)^2 \, (z-i)} \; = \; 0 \, ,$$

where the contour C is the circle of radius 2 centred at the origin. What is the answer when C is changed to be the rectangle with vertices at $\pm \frac{1}{2} + 2i$ and $\pm \frac{1}{2} - 2i$?

Recall that the residue of a complex function f(z) at a pole z = a of multiplicity m is given by the expression

$$\lim_{z \to a} \frac{1}{(m-1)!} \left[\frac{d^{m-1}}{dz^{m-1}} \left\{ (z-a)^m f(z) \right\} \right] .$$

4. The Fourier convolution of the functions f(t) and g(t) is defined by

$$f * g = \int_{-\infty}^{\infty} f(u)g^*(t-u) \, du$$

where g^* is the complex conjugate of g. If $\overline{f}(\omega)$ and $\overline{g}(\omega)$ are the Fourier transforms of f(t) and g(t) respectively, prove the Fourier convolution theorem

$$\int_{-\infty}^{\infty} e^{-i\omega t} (f * g) \, dt = \overline{f}(\omega) \, \overline{g}(\omega).$$

For a function f(t), if $\gamma(t)$ is defined by

$$\gamma(t) = \frac{f * f}{\int_{-\infty}^{\infty} |f(t)|^2 dt}$$

show that

$$\int_{-\infty}^{\infty} \overline{\gamma}(\omega) \, d\omega = 2\pi.$$

[II(3)E 2001]

5. (i) A second order ordinary differential equation takes the form

$$\frac{d^2x}{dt^2} \ + \ \omega^2 x \ = \ f(t) \, ,$$

where f(t) is an arbitrary piecewise smooth function. It has initial conditions

$$x = \frac{dx}{dt} = 0$$
 when $t = 0$.

Use the Laplace convolution theorem to show that

$$x(t) = \frac{1}{\omega} \int_0^t \sin(\omega u) f(t-u) \, du.$$

(ii) A third order ordinary differential equation takes the form

$$\frac{d^3x}{dt^3} \ + \ 3\frac{d^2x}{dt^2} \ + \ 3\frac{dx}{dt} \ + \ x \ = \ f(t)$$

where f(t) is an arbitrary piecewise smooth function. x(t) and its first two derivatives satisfy the conditions

$$x = \frac{dx}{dt} = \frac{d^2x}{dt^2} = 0$$
 when $t = 0$.

Use the shift and convolution theorems to show that

$$x(t) = \frac{1}{2} \int_0^t e^{-u} u^2 f(t-u) \, du.$$

6. Given that

$$\int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx = i\pi,$$

show that

$$\int_{-\infty}^{\infty} \frac{e^{ipx}}{x} dx = \begin{cases} +i\pi, & p > 0\\ \\ -i\pi, & p < 0, \end{cases}$$

where p is an arbitrary real number. Hence show that the Fourier transform $\overline{f}(\omega)$ of the function

$$f(t) = \frac{\sin t/2}{t/2}$$

is given by

$$\overline{f}(\omega) = \begin{cases} 2\pi , & -\frac{1}{2} < \omega < \frac{1}{2}, \\ \\ 0 , & \omega < -\frac{1}{2}, & \omega > \frac{1}{2}. \end{cases}$$

PLEASE TURN OVER

[II(3)E 2001]

7. (i) The double integral I_1 is given by

$$I_1 = \iint_{R_1} (x+y)^2 \cos(x^2 - y^2) \, dx \, dy \,,$$

where R_1 is the finite region in the x-y plane enclosed by the lines x = 0, y = 0and y = 1 - x.

Show that, by using the transformation,

$$u = x - y, \quad v = x + y,$$

the integral can be written as

$$I_1 = \frac{1}{2} \int_0^1 v^2 \left(\int_{-v}^v \cos(uv) \, du \right) \, dv$$

Hence evaluate I_1 .

(ii) Use the same transformation to evaluate

$$I_2 = \iint_{R_2} (x^2 + y^2) \, dx dy \,,$$

where R_2 is the interior of the square bounded by $y = \pm x$, $y = \pm (x-1)$.

8. A vector field ${\bf F}$ is defined as

$$\mathbf{F} = 2xye^{z}\mathbf{i} + x^{2}e^{z}\mathbf{j} + (x^{2}ye^{z} + z^{2} + 3z)\mathbf{k}.$$

- (i) Find div \mathbf{F} and curl \mathbf{F} .
- (ii) Find a function $\phi(x, y, z)$ such that $\mathbf{F} = \nabla \phi$.
- (iii) Evaluate

$$\frac{\partial^2}{\partial z^2} \left(x \, \mathbf{F} \, . \, \mathbf{i} \ - \ 2\phi \right).$$

9. (i) The vector field \mathbf{F} is defined by

$$\mathbf{F} = (y^2 \cos x) \mathbf{i} + (\alpha y \sin x) \mathbf{j},$$

where α is a constant. Find the value of α such that curl $\mathbf{F} = \mathbf{0}$.

(ii) Consider the integral

$$I = \int_C (y^2 \cos x \, dx + \beta y \sin x \, dy), \ (\beta \text{ constant}),$$

where C is a curve joining the points (0, 0) and $(\pi/2, 1)$.

Evaluate I in the following cases:

- (a) C is the line $y = (2/\pi)x$;
- (b) C is the curve $y = \sin x$.

Show that the answers to (a) and (b) are equal for one particular value of β and find that value.

Explain why the value of α found in part (i) is the same as this value of β .

10. P and Q are continuous functions of x and y with continuous first partial derivatives in a simply connected region R with a piecewise smooth boundary C. Green's Theorem in a plane says that

$$\oint_C (Pdx + Qdy) = \int \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, dxdy.$$

Find a two-dimensional vector \boldsymbol{u} , defined in terms of P and Q, to show that Green's Theorem can be re-expressed as the two-dimensional version of the Divergence Theorem

$$\oint_C \boldsymbol{u}.\boldsymbol{n}\,ds = \iint_R \operatorname{div} \boldsymbol{u}\,dxdy$$

where \boldsymbol{n} is the unit normal to the curve C.

If \boldsymbol{u} is given by $\boldsymbol{u} = x^2 \boldsymbol{i} + y^2 \boldsymbol{j}$ and R is the first quadrant of the circle of unit radius, evaluate the right hand side of the Divergence Theorem to show that

$$\iint_R \operatorname{div} \boldsymbol{u} \, dx dy = 4/3.$$

PLEASE TURN OVER

11. Let A_1, \ldots, A_k form a partition of a sample space and B be some event. Use the definition of conditional probability and the theorem of total probabilities to derive Bayes's formula for $P(A_i | B)$.

It is estimated that 5% of optical disks produced by a manufacturer are faulty. A disk may be subjected to an initial diagnostic test. If there is a fault, the test gives a diagnosis of 'faulty' with probability 0.8; if there is no fault the test gives a diagnosis of 'OK' with probability 0.95. If the test gives a diagnosis of 'faulty', the disk is rejected. A disk is chosen at random and tested. What is the probability that

- (i) the test gives a diagnosis of 'OK'?
- (ii) a disk is faulty which has been given a diagnosis of 'OK'?

If the initial test gives the diagnosis 'OK', a further independent test is performed; this test has exactly the same properties as the initial test, except that if there is a fault, the test gives a diagnosis of 'faulty' 99% of the time. If this test gives a diagnosis of 'OK' the disk is accepted for use, otherwise it is rejected.

- (iii) Determine the probability that a faulty disk is accepted for use.
- 12. Let X and Y be two random variables. The coefficient of correlation between X and Y is given by

$$\rho_{X,Y} = \frac{\operatorname{cov}\{X,Y\}}{[\operatorname{var}\{X\}\operatorname{var}\{Y\}]^{1/2}} = \frac{E\{XY\} - E\{X\}E\{Y\}}{[\operatorname{var}\{X]\operatorname{var}\{Y\}]^{1/2}}.$$

- (i) What does it measure? How should values of $\rho_{X,Y}$ of -1, 0 and 1 be interpreted?
- (ii) If X and Y are independent, what is $\rho_{X,Y}$?

Let X and Y have the joint probability density function given by

$$f_{X,Y}(x, y) = \begin{cases} x^{-1}, & 0 \le y \le x \le 1, \\ 0, & \text{otherwise}. \end{cases}$$

- (iii) Calculate $E \{XY\}$ and $E \{X\}$ and $E \{Y\}$, and hence find the value of $cov \{X, Y\}$.
- (iv) Are X and Y independent?

END OF PAPER

$$\begin{array}{c} \begin{array}{c} \left(\prod_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_$$

•

Setter: J. D. GIBBON Checker: HEREN Setter's signature: J.D. Ei Non Checker's signature: DHobert

Setter: J.B. GIBBON Checker: Setter's signature: J. D. Gri Mon. Checker's signature:

Setter: J.D. GIDBON Checker: NERBERT Setter's signature: J.D. Li Kon Checker's signature: Kobet

E S

Setter: J.D. GIBAON Checker: DERRAN Setter's signature: J. D. Gillion Checker's signature: Dipobert

Checker: J.S. GIBBON

Checker's signature: J.D. Griphon

Checker: HERREN

Checker's signature : Male thet

1510

PAPER MATHEMATICS FOR ENGINEERING STUDENTS $EE \mathbb{I}(3)$ EXAMINATION QUESTION / SOLUTION SESSION : 2000 - 2001OUESTION Please write on this side only, legibly and neatly, between the margins SOLUTION $P(A_i|B) = P(A_i \cap B) / P(B) = P(B|A_i) P(A_i) / P(B)$ Stats 31 by law of total probabilities $P(B) = \sum_{i=1}^{k} P(B|A_i) P(A_i)$. Hence P(A;|B) = P(B|A;)P(A;)4 $\sum_{i=1}^{A} P(B|A_i) P(A_i)$ Let OK = test soys 'OK'; F = faulty disk. The $P(Ok|\bar{F}) = 0.95$ $P(\bar{Ok}|F) = 0.8$ $P(\bar{F}) = 0.05$ so P(Ok|F) = 0.2 $P(\bar{F}) = 0.95$ 2 (i) P(ok) = P(ok|F)P(F) + P(ok|F)P(F) $= (0.2 \times 0.05) + (0.95 \times .95) = 0.9125$ 3 = 0.2 × 0.05 /.9/25 (ii) P(F | ok) = P(ok|F) P(F) $P(ok|F)P(F) + P(ok)\overline{F})P(\overline{F})$ 3 = 0.01096 to 5 dp (iii) $P(OK_{1}|F) = 0.99$ $P(accepted|F) = P(OK_1 \cap OK_2|F)$ $(OK_1 \equiv OK)$ = $P(ok_1|F)P(ok_2|F)$ $= 0.2 \times 0.01$ = 0.002 3

エミ

Setter: ATWalde Checker: DJHAND

PAPER MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION / SOLUTION EEI(3)2000 - 2001SESSION : OUESTION Please write on this side only, legibly and neatty, between the margins SOLUTION Stats 32 i) The coefficient of correlation is a measure of the strength of the linear relationship between two random variables. If |Pxrx |= 1 they are perfectly linearly related, 4 if Pxix = 0, they are not linearly related. ii) If X and Y are independent Pxy = 0. 2 $f_{X,Y}(X,y) = \begin{cases} x^{-1} & 0 \le y \le x \le l \\ 0 & \text{otherwise} \end{cases}$ $E \{XY\} = \int_{x=0}^{1} \int_{x=0}^{x} xyx^{-1} dx dy = \int_{x=0}^{1} \int_{y=0}^{2} y dx dy = \int_{x=0}^{1} \frac{y^{2}}{2} \Big|_{x=0}^{x} = \int_{x=0}^{1$ $E\{X\} = \int_{-\infty}^{1} \int_{-\infty}^{\infty} 1 dx dy = \int x dx = \frac{x^2}{2} \Big|_{-\infty}^{1} = \frac{y_2}{2}.$ $E\{Y\} = \int_{X=0}^{1} \int_{X=0}^{X} \frac{y}{x} dx dy = \int_{1}^{1} \frac{1}{2x} \frac{y^{2}}{2} \int_{1}^{X} dx = \int_{1}^{1} \frac{1}{2x} \frac{y^{2}}{2} dx = \int_{1}^{1} \frac{x}{2} dx = \frac{x^{2}}{4} \int_{1}^{1} \frac{y}{4} \frac{y^{2}}{4} \int_{1}^{1} \frac{y^{2}}{2} dx = \int_{1}^{1} \frac{x}{2} dx = \frac{x^{2}}{4} \int_{1}^{1} \frac{y^{2}}{4} \frac{y^{2}}{4} \int_{1}^{1} \frac{y^{2}}{4} \frac{y^{2}}{4} \frac{y^{2}}{4} \int_{1}^{1} \frac{y^{2}}{4} \frac{y^{2}}{4} \frac{y^{2}}{4} \int_{1}^{1} \frac{y^{2}}{4} \frac{y^{2}}{4} \frac{y^{2}}{4} \int_{1}^{1} \frac{y^{2}}{4} \frac{y^{2}}{4$ 2 7 $C_{0} \times \{X,Y\} = \frac{1}{6} - \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{24}$ (iv) Px, = 0 since cov [x, y] = Y24. Here x and Y 2 are not independent. 15 AN Setter's signature : Setter : AT Walden

E 12

Checker: DJHAND

Checker's signature : DTH