UNIVERSITY OF LONDON

B.ENG. AND M.ENG. EXAMINATIONS 2001

For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination for the Associateship.

PART II : MATHEMATICS 3 (ELECTRICAL ENGINEERING)

Wednesday 6th June 2001 2.00-5.00 pm

Answer EIGHT questions.
[Before starting, please make sure that the paper is complete; there should be 7 pages, with a total of 12 questions. Ask the invigilator for a replacement if your copy is faulty.]

1. Consider the mapping

$$
w=\frac{1}{z-i}
$$

from the z-plane to the w-plane, where $z=x+i y$ and $w=u+i v$.
(i) Show that, in the z-plane, the family of circles centred at $(0,1)$ with radius a

$$
x^{2}+(y-1)^{2}=a^{2}
$$

maps to another family of circles in the w-plane. What is the radius of this family and where is its centre?
(ii) What is the image in the w-plane of the x-axis $(y=0)$ in the z-plane? Show that the curve that represents this image passes through the origin in the w-plane.
(iii) Show that the family of straight lines $y=c x$ in the z-plane with $c=$ constant have the image in the w-plane represented by

$$
\left(u-\frac{c}{2}\right)^{2}+\left(v-\frac{1}{2}\right)^{2}=\frac{1}{4}\left(1+c^{2}\right) .
$$

2. By choosing a suitable contour C in the upper half of the complex plane, use the contour integral

$$
\oint_{C} \frac{e^{i z} d z}{\left(z^{2}+4\right)\left(z^{2}+1\right)}
$$

to show that

$$
\int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+4\right)\left(x^{2}+1\right)}=\frac{\pi}{6}\left(\frac{2 e-1}{e^{2}}\right) .
$$

3. (i) Show that if C is a circle of arbitrary radius r centred at the origin, then the value of the complex integral

$$
\oint_{C} \frac{d z}{z}
$$

is independent of r. What is this value?
(ii) Use the Residue Theorem to show that

$$
\oint_{C} \frac{z d z}{(z-1)^{2}(z-i)}=0
$$

where the contour C is the circle of radius 2 centred at the origin. What is the answer when C is changed to be the rectangle with vertices at $\pm \frac{1}{2}+2 i$ and $\pm \frac{1}{2}-2 i$?

Recall that the residue of a complex function $f(z)$ at a pole $z=a$ of multiplicity m is given by the expression

$$
\lim _{z \rightarrow a} \frac{1}{(m-1)!}\left[\frac{d^{m-1}}{d z^{m-1}}\left\{(z-a)^{m} f(z)\right\}\right]
$$

4. The Fourier convolution of the functions $f(t)$ and $g(t)$ is defined by

$$
f * g=\int_{-\infty}^{\infty} f(u) g^{*}(t-u) d u
$$

where g^{*} is the complex conjugate of g. If $\bar{f}(\omega)$ and $\bar{g}(\omega)$ are the Fourier transforms of $f(t)$ and $g(t)$ respectively, prove the Fourier convolution theorem

$$
\int_{-\infty}^{\infty} e^{-i \omega t}(f * g) d t=\bar{f}(\omega) \bar{g}(\omega) .
$$

For a function $f(t)$, if $\gamma(t)$ is defined by

$$
\gamma(t)=\frac{f * f}{\int_{-\infty}^{\infty}|f(t)|^{2} d t}
$$

show that

$$
\int_{-\infty}^{\infty} \bar{\gamma}(\omega) d \omega=2 \pi .
$$

5. (i) A second order ordinary differential equation takes the form

$$
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=f(t)
$$

where $f(t)$ is an arbitrary piecewise smooth function. It has initial conditions

$$
x=\frac{d x}{d t}=0 \text { when } t=0
$$

Use the Laplace convolution theorem to show that

$$
x(t)=\frac{1}{\omega} \int_{0}^{t} \sin (\omega u) f(t-u) d u
$$

(ii) A third order ordinary differential equation takes the form

$$
\frac{d^{3} x}{d t^{3}}+3 \frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+x=f(t)
$$

where $f(t)$ is an arbitrary piecewise smooth function. $x(t)$ and its first two derivatives satisfy the conditions

$$
x=\frac{d x}{d t}=\frac{d^{2} x}{d t^{2}}=0 \quad \text { when } t=0
$$

Use the shift and convolution theorems to show that

$$
x(t)=\frac{1}{2} \int_{0}^{t} e^{-u} u^{2} f(t-u) d u .
$$

6. Given that

$$
\int_{-\infty}^{\infty} \frac{e^{i x}}{x} d x=i \pi
$$

show that

$$
\int_{-\infty}^{\infty} \frac{e^{i p x}}{x} d x= \begin{cases}+i \pi, & p>0 \\ -i \pi, & p<0\end{cases}
$$

where p is an arbitrary real number. Hence show that the Fourier transform $\bar{f}(\omega)$ of the function

$$
f(t)=\frac{\sin t / 2}{t / 2}
$$

is given by

$$
\bar{f}(\omega)= \begin{cases}2 \pi, & -\frac{1}{2}<\omega<\frac{1}{2} \\ 0, & \omega<-\frac{1}{2}, \quad \omega>\frac{1}{2}\end{cases}
$$

7. (i) The double integral I_{1} is given by

$$
I_{1}=\iint_{R_{1}}(x+y)^{2} \cos \left(x^{2}-y^{2}\right) d x d y
$$

where R_{1} is the finite region in the $x-y$ plane enclosed by the lines $x=0, y=0$ and $y=1-x$.

Show that, by using the transformation,

$$
u=x-y, \quad v=x+y
$$

the integral can be written as

$$
I_{1}=\frac{1}{2} \int_{0}^{1} v^{2}\left(\int_{-v}^{v} \cos (u v) d u\right) d v
$$

Hence evaluate I_{1}.
(ii) Use the same transformation to evaluate

$$
I_{2}=\iint_{R_{2}}\left(x^{2}+y^{2}\right) d x d y
$$

where R_{2} is the interior of the square bounded by $y= \pm x, \quad y= \pm(x-1)$.
8. A vector field \mathbf{F} is defined as

$$
\mathbf{F}=2 x y e^{z} \mathbf{i}+x^{2} e^{z} \mathbf{j}+\left(x^{2} y e^{z}+z^{2}+3 z\right) \mathbf{k}
$$

(i) Find div \mathbf{F} and $\operatorname{curl} \mathbf{F}$.
(ii) Find a function $\phi(x, y, z)$ such that $\mathbf{F}=\nabla \phi$.
(iii) Evaluate

$$
\frac{\partial^{2}}{\partial z^{2}}(x \mathbf{F} \cdot \mathbf{i}-2 \phi)
$$

9. (i) The vector field \mathbf{F} is defined by

$$
\mathbf{F}=\left(y^{2} \cos x\right) \mathbf{i}+(\alpha y \sin x) \mathbf{j},
$$

where α is a constant. Find the value of α such that $\operatorname{curl} \mathbf{F}=\mathbf{0}$.
(ii) Consider the integral

$$
I=\int_{C}\left(y^{2} \cos x d x+\beta y \sin x d y\right),(\beta \text { constant })
$$

where C is a curve joining the points $(0,0)$ and $(\pi / 2,1)$.
Evaluate I in the following cases:
(a) C is the line $y=(2 / \pi) x$;
(b) C is the curve $y=\sin x$.

Show that the answers to (a) and (b) are equal for one particular value of β and find that value.

Explain why the value of α found in part (i) is the same as this value of β.
10. P and Q are continuous functions of x and y with continuous first partial derivatives in a simply connected region R with a piecewise smooth boundary C. Green's Theorem in a plane says that

$$
\oint_{C}(P d x+Q d y)=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

Find a two-dimensional vector \boldsymbol{u}, defined in terms of P and Q, to show that Green's Theorem can be re-expressed as the two-dimensional version of the Divergence Theorem

$$
\oint_{C} \boldsymbol{u} \cdot \boldsymbol{n} d s=\iint_{R} \operatorname{div} \boldsymbol{u} d x d y
$$

where \boldsymbol{n} is the unit normal to the curve C.
If \boldsymbol{u} is given by $\boldsymbol{u}=x^{2} \boldsymbol{i}+y^{2} \boldsymbol{j}$ and R is the first quadrant of the circle of unit radius, evaluate the right hand side of the Divergence Theorem to show that

$$
\iint_{R} \operatorname{div} \boldsymbol{u} d x d y=4 / 3
$$

11. Let A_{1}, \ldots, A_{k} form a partition of a sample space and B be some event. Use the definition of conditional probability and the theorem of total probabilities to derive Bayes's formula for $P\left(A_{i} \mid B\right)$.

It is estimated that 5% of optical disks produced by a manufacturer are faulty. A disk may be subjected to an initial diagnostic test. If there is a fault, the test gives a diagnosis of 'faulty' with probability 0.8 ; if there is no fault the test gives a diagnosis of 'OK' with probability 0.95 . If the test gives a diagnosis of 'faulty', the disk is rejected. A disk is chosen at random and tested. What is the probability that
(i) the test gives a diagnosis of ' OK '?
(ii) a disk is faulty which has been given a diagnosis of 'OK'?

If the initial test gives the diagnosis ' OK ', a further independent test is performed; this test has exactly the same properties as the initial test, except that if there is a fault, the test gives a diagnosis of 'faulty' 99% of the time. If this test gives a diagnosis of 'OK' the disk is accepted for use, otherwise it is rejected.
(iii) Determine the probability that a faulty disk is accepted for use.
12. Let X and Y be two random variables. The coefficient of correlation between X and Y is given by

$$
\rho_{X, Y}=\frac{\operatorname{cov}\{X, Y\}}{[\operatorname{var}\{X\} \operatorname{var}\{Y\}]^{1 / 2}}=\frac{E\{X Y\}-E\{X\} E\{Y\}}{[\operatorname{var}\{X\} \operatorname{var}\{Y\}]^{1 / 2}} .
$$

(i) What does it measure? How should values of $\rho_{X, Y}$ of $-1,0$ and 1 be interpreted?
(ii) If X and Y are independent, what is $\rho_{X, Y}$?

Let X and Y have the joint probability density function given by

$$
f_{X, Y}(x, y)= \begin{cases}x^{-1}, & 0 \leq y \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(iii) Calculate $E\{X Y\}$ and $E\{X\}$ and $E\{Y\}$, and hence find the value of $\operatorname{cov}\{X, Y\}$.
(iv) Are X and Y independent?

MATHS 3
MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/ SOLUTION
SESSION : 2000-2001

a) The family of circles $x^{2}+(y-1)^{2}=a^{2}$ map to $u^{2}+v^{2}=1 / a^{2}$ - a family curved at $(0,0)$ radius a^{-1}.
b) $y=0 \Rightarrow u=\frac{x}{x^{2}+1}, v=\frac{1}{x^{2}+1}$

From(x) $\quad \therefore u^{2}+v^{2}=\frac{1}{x^{2}+1}=v$

$$
\therefore \quad n^{2}+(v-1 / 2)^{2}=(1 / 2)^{2}
$$

A circle centred $(0,1 / 2)$ radius $\frac{1}{2}$

c)

$$
\begin{array}{ll}
y=c x \quad u=\frac{x}{x^{2}+(c x-1)^{2}}, & v=\frac{1-c x}{x^{2}+(c x-1)^{2}} \\
u^{2}+v^{2}=\frac{1}{x^{2}+(c x-1)^{2}} & v=\frac{1}{x^{2}+(e x-1)^{2}}-c u \\
\therefore u^{2}+v^{2}=v+c u \\
\therefore\left(u-\frac{c}{2}\right)^{2}+\left(v-\frac{1}{2}\right)^{2}=\frac{1}{4}\left(1+c^{2}\right)
\end{array}
$$

Farrily of circles centred at $\left(\frac{c}{2}, \frac{1}{2}\right)$ radium $\frac{1}{2} \sqrt{1+c^{2}}$.

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION／SOLUTION

SESSION ：2000－2001

Please write on this side only，legibly and neatly，between the margins

Residue at $z=i=\frac{-i}{6} e^{-1}$

$$
\begin{aligned}
& \quad z=2 i=\frac{e^{-2}}{(1-4) 4 i}=\frac{i e^{-2}}{12} \\
& \therefore \oint_{c}=2 \pi i^{2}\left(\frac{e^{-2}}{12}-\frac{e^{-1}}{b}\right)=\frac{\pi}{6}\left(\frac{2 e-1}{e^{2}}\right)
\end{aligned}
$$

Now

$$
\oint_{c} \frac{e^{i z d z}}{\left(z^{2}+4\right)\left(z^{2}+1\right)}=\int_{-R}^{R} \frac{e^{i x d x}}{\left(x^{2}+4\right)\left(x^{2}+1\right)}+\int_{H_{R}} \frac{e^{i z d z}}{\left(z^{2}+4\right)\left(z^{2}+1\right)}
$$

Now take the limit $R \rightarrow \infty$

$$
\lim _{R \rightarrow \infty} \oint_{c}=\int_{-\infty}^{\infty} \frac{e^{i x} d x}{\left(x^{2}+4\right)\left(x^{2}+1\right)}+\lim _{R \rightarrow \infty} \int_{H_{R}}
$$

Now by Jordanis Lemma $\lim _{R \rightarrow \infty} \int_{H_{R}}=0$ provided
（i）Only sing－lanities in upper $1 / 2-$ plan are poles A
（ii）$f(z) \rightarrow 0$ as $R \rightarrow \infty \quad \checkmark \quad \int_{H_{k}} e^{i m z} f(z) d z=\int_{H_{k}}$
（iii）$m>0$

$$
\text { Moreover } \begin{aligned}
\int_{-\infty}^{\infty} & =\int_{-\infty}^{\infty} \frac{(\cos x+i \sin x) d x}{\left(x^{2}+4\right)\left(x^{2}+1\right)} \\
& =\int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+4\right)\left(x^{2}+1\right)}+i .0 \text { symin } \\
\therefore \int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+4\right)\left(x^{2}+1\right)} & =\frac{\pi}{6}\left(\frac{2 e-1}{e^{2}}\right)
\end{aligned}
$$

Setter：J．D．GIBBON
Checker：$N=$ VEN
(ii) $\oint_{c} F(z) d z=2 \pi i x\{$ sum of Residues of $F(t)$ in $c\}$

Residues at $z=i$ (simple)
$z=1$ (double)
calculated: Res, ot $z=i$ is $\frac{i}{(i-1)^{2}}=\frac{-1}{2}$

$$
\begin{aligned}
z=1 & \dot{i}\left[\frac{d}{d z}\left(\frac{z}{z-i}\right)\right]_{z=1} \\
& =\left[\frac{(z-i)-z}{(z-i)^{2}}\right]_{z=1}=\frac{-i}{-2 i}=\frac{1}{2}
\end{aligned}
$$

Sum of Residues $=-1 / 2+1 / 2=0$ If the contour is enomged to the box them $z=1$ is excluded and we have $2 \pi i \times(-1 /)=-\pi i$

Alternatively, by the Residue Theorem $F(z)=\frac{1}{z}$ hos one simple pole at $z=0$ in C

$$
\therefore \quad \oint_{c} \frac{d z}{z}=2 \pi_{i} \times(\text { Res at } z=0)
$$

Res, of $1 / z$ at $z=0=1$
$\therefore \oint_{e} \frac{d z}{z}=2 \pi$ i regardless of size of circle.

Setter: J.D.GBBON

$$
\begin{aligned}
& f * g=\int_{-\infty}^{\infty} f\left(t^{\prime}\right) g\left(t-t^{\prime}\right) d t^{\prime} \\
& F . T(f * g)=\int_{-\infty}^{\infty} e^{-i \omega t}(f * g) d t \\
&=\int_{-\infty}^{\infty} e^{-i \omega t}\left(t_{-\infty}^{\infty} \equiv u\right. \\
& \text { in } q u \\
&
\end{aligned}
$$

Let $\tau=t-t^{\prime}$: exchanging the order of integration cancer no problem as the domain is doubly infinite

$$
\begin{aligned}
\therefore F T(f \forall g) & =\int_{-\infty}^{\infty} f\left(t^{\prime}\right)\left(\int_{-\infty}^{\infty} e^{-i \omega t} g\left(t-t^{\prime}\right) d t\right) d t^{\prime} \\
& =\int_{-\infty}^{\infty} f\left(t^{\prime}\right)\left(e^{-i \omega t^{\prime}} \int_{-\infty}^{\infty} e^{-i \omega \tau} g(\tau) d \tau\right) d t^{\prime} \\
& =\left(\int_{-\infty}^{\infty} f\left(t^{\prime}\right) e^{-i \omega t^{\prime}} d t^{\prime}\right)\left(\int_{-\infty}^{\infty} e^{-i \omega \tau} g(\tau) d \tau\right) \\
& =\bar{f}(\omega) \quad \bar{g}(\omega)
\end{aligned}
$$

Now $\gamma(t)=\int_{-\infty}^{\infty} f\left(t^{\prime}\right) f\left(t-t^{\prime}\right) d t^{\prime} /\left.\int_{-\infty}^{\infty} f(t)\right|^{2} d t$
Numerator is a monster so we have

$$
\bar{v}(\omega)=F \cdot T \cdot(v(t))=\left(\int_{-\infty}^{\infty}|f|^{2} d t\right)^{-1}[\bar{f}(\omega) \bar{f}(w))
$$

from the Convolution Thu.
Now $\left.\quad \int_{-\infty}^{\infty} f(t)\right|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\bar{f}(\omega)|^{2} d \omega$ (Parseral)

$$
\iint_{-\infty}^{\infty} \bar{\gamma}(\omega) d u=2 \pi
$$

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/ SOLUTION

SESSION : 2000-2001
a)

$$
\ddot{x}+w^{2} x=f(t)
$$

Using the Math. formula re $f(\ddot{x})=s^{2} \bar{x}(s)-s x(0)-\dot{x}(0)$ $=s^{2} \bar{x}(s)$ in this a are

$$
\therefore\left(s^{2}+w^{2}\right) \pi(s)=f(s)
$$

$$
\therefore \bar{x}(s)=\bar{f}(s) \bar{g}(s) \text { where } \bar{g}(s)=\frac{1}{s^{2}+w^{2}}
$$

Here $g(t)=\frac{1}{\omega} \sin \omega t \quad(s>0)$
and $\quad x(t)=\mathcal{d}^{-1}[\bar{f}(s) g(t)]=\int_{0}^{t} g\left(t^{\prime}\right) f\left(t+t^{\prime}\right) d t^{\prime}$

$$
=\frac{1}{\omega} \int_{0}^{t} \sin \left(\omega t^{\prime}\right) f\left(t-t^{\prime}\right) d t^{\prime}
$$

Convolution
b)

$$
\dddot{x}+3 \ddot{x}+3 \dot{x}+x=f(t)
$$

Now $\int_{0}^{\infty} e^{-c t} \ddot{x} d r=\int_{0}^{\infty} e^{-r t} d(\ddot{x})$

$$
=\left[\ddot{x} e^{-s t}\right]_{0}^{\infty}+s \int_{0}^{\infty} \ddot{x} e^{-\Delta t} d t
$$

For $s>0$, we have, with IC $\ddot{x}(0)=x(0)=x(0)$

$$
\begin{aligned}
& \mathcal{L}(\ddot{x})=s \mathcal{L}(\ddot{x})=s^{3} \bar{x}(s) \\
\therefore \quad & \left(s^{3}+3 s^{2}+3 s+1\right) \bar{x}(s)=\bar{f}(s)
\end{aligned}
$$

or $\quad(s+1)^{3} \bar{x}(s)=\bar{f}(s) \Rightarrow \bar{x}(s)=\bar{g}(s) \bar{f}(s)$
Now $\neq\left(s^{-3}\right)=\frac{1}{2} t^{2}$,

$$
(s+1)^{-3}
$$

plus the shift theorem, gites

$$
\begin{aligned}
& g(t)=\frac{1}{2} t^{2} e^{-t} \\
& \therefore x(t)=\frac{1}{2} \int_{0}^{t} e^{-t^{\prime}} t^{\prime 2} f\left(t-t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

Setter: J. $\triangle . G 1 B A O N$

EXAMINATION QUESTION/SOLUTION
SESSION: 2000-2001

In $\int_{-\infty}^{\infty} \frac{e^{i x}}{x} d x$, put $x=p t \quad d x=p d t$

$$
\int_{-\infty}^{\infty} \frac{e^{i x}}{x} d x=\int_{-\infty / p}^{\infty / p} \frac{e^{i p t} d t}{t}=\left\{\begin{array}{cl}
i \pi & p>0 \\
-i \pi & p<0
\end{array}\right.
$$

$$
\text { F.T. }\left(\frac{\sin t / 2}{t / 2}\right)=\int_{-\infty}^{\infty} e^{-i \omega t}\left(\frac{e^{i t / 2}-e^{-i t / 2}}{2 i t / 2}\right) d t
$$

$$
=-i \int_{-\infty}^{\infty} \frac{e^{i\left(\frac{1}{2}-\omega\right) t}}{t} d t+i \int_{-\infty}^{\infty} \frac{e^{i\left(-v-\frac{1}{2}\right) t}}{t} d t
$$

$$
\begin{aligned}
& = \begin{cases}-i(i \bar{\pi})+i(-i \pi) \\
-i & (i \pi)+i(-i \bar{\pi}) \\
-i & (-i \pi)+i(-i \pi) \\
-i & (i \bar{\pi})+i(i \bar{\pi})\end{cases} \\
& =\left\{\begin{array}{cc}
2 \pi & -\frac{1}{2}<\omega<\frac{1}{2} \\
0 & \omega>\frac{1}{2}, \omega<-\frac{1}{2} \\
\quad f(\omega)
\end{array}\right.
\end{aligned}
$$

$$
w<\frac{1}{2}
$$

$$
-\frac{1}{2}<\omega
$$

$$
\omega>\frac{1}{2}
$$

$$
w<-\frac{1}{2}
$$

MATHEMATICS FOR ENGINEERING STUDENTS
EXAMINATION QUESTION/SOLUTION
SESSION: 2000-2001
Please write on this side only, legibly and neath, between the margins

$\left.$| u_{x} | v_{x} |
| :--- | :--- |
| u_{y} | v_{y} |\right|$^{-1}$

$$
=\left|\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right|^{-1}=(1-(-1))^{-1}=\frac{1}{2} .
$$

We have $u=x-y, v=x+y \Rightarrow x=\frac{1}{2}(u+v) ; y=\frac{1}{2}(v-u)$
Thus $\begin{aligned} x_{-}=0 \Rightarrow u=-v \\ y=0 \Rightarrow u=v\end{aligned} \quad$ and $y=1-x \Rightarrow v=1$.

$$
y=0 \Rightarrow u=v
$$

ie.

$80:$

$$
\begin{aligned}
& I_{1}=\int_{v=0}^{v=1} \int_{u=-v}^{u=v} v^{2} \cos (u v) d u d v \cdot\left(\frac{1}{2}\right)^{\Delta} \operatorname{fran} v \\
&=\int_{v=0}^{v=1} \frac{1}{2} v^{2}\left[\frac{\sin (u v)}{v}\right]_{u=-v}^{u=v} d v \\
&=\int_{0}^{1} v \sin \left(v^{2}\right) d v \quad \operatorname{subst} t=v^{2} \\
&
\end{aligned}
$$

(ii) As above, $J=\frac{1}{2}$.

$$
\begin{aligned}
& x^{2}+y^{2}=\left(\frac{1}{2}(u+v)\right)^{2}+\left(\frac{1}{2}(u-v)\right)^{2}=\frac{1}{2}\left(u^{2}+v^{2}\right) . \\
& y= \pm x \Rightarrow u=0, v=0 \\
& y=x-1 \Rightarrow u=1, \quad y=1-x \Rightarrow v=1
\end{aligned}
$$

$$
\text { and } I_{2}=\int_{v=0}^{v=1} \int_{u=0}^{u=1} \frac{1}{2}\left(u^{2}+v^{2}\right) \cdot \frac{1}{2} d u d v
$$

$$
=\frac{1}{4} \int_{0}^{1}\left[\frac{u^{3}}{3}+v^{2} u\right]_{u=0}^{u=1} d v
$$

$$
=\frac{1}{4} \int_{0}^{1}\left(\frac{1}{3}+v^{2}\right) d v=\frac{1}{4}\left[\frac{1}{3} v+\frac{v^{3}}{3}\right]_{0}^{1}=\frac{1}{6} .
$$

MATHEMATICS FOR ENGINEERING STUDENTS
EXAMINATION QUESTION/SOLUTION
SESSION: 2000-2001

Please write on this side only, legibly and neath, between the margins

$$
\underline{F}=\left(f_{1}, F_{2}, F_{3}\right)
$$

22
(i)

$$
\operatorname{div} \underline{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

)

1

$$
\text { s. div } \underline{F}=2 y e^{z}+x^{2} y e^{z}+2 z+3
$$

$$
\operatorname{Cur} F=\left|\begin{array}{ccc}
\dot{i} & \underline{j} & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \tag{3}\\
2 x y e^{2} & x^{2} e^{z} & x y y e^{z}+z^{2}+3 z
\end{array}\right|
$$

$$
\begin{equation*}
=0 \quad 0 \quad{ }_{2 x y} e^{z} \quad \phi=x^{2} y e^{z}+g_{1}(y, z) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial x}=2 x y e \\
& \frac{\partial \varphi}{\partial y}=x^{2} e^{2}
\end{aligned} \Rightarrow \varphi=x^{2} y e^{z}+g_{2}(y, z)
$$

(ii)

$$
\begin{align*}
& \frac{\partial \varphi}{\partial y}=x^{2} e^{2} \tag{4}\\
& \frac{\partial \varphi}{\partial z}=x^{2} y e^{z}+z^{2}+3 z \Rightarrow \varphi=x^{2} y e^{2}+\frac{z^{3}}{3}+\frac{3 z^{2}}{2}+g_{3}(x, y)
\end{align*}
$$

Hance $\varphi=x^{2} y e^{2}+\frac{z^{3}}{3}+\frac{3 z^{2}}{2}+\cos 1-t$
iii)

$$
\begin{aligned}
& \underline{F} \cdot \underline{\dot{u}}=2 x y e^{z} \\
& x E \cdot \dot{i}=2 x^{2} y e^{z}
\end{aligned}
$$

so $x F, i-2 \phi=\frac{-2 z^{3}}{3}-3 z^{2}+$ cox pl.

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z^{2}}(x E \cdot i-2 \phi)=-4 z-6 \tag{3}
\end{equation*}
$$

Setter: ATKINson
Checker: J: $J, G I B B D N$

Setter's signature: c.atkinton
Checker's signature: $\bar{V} \cdot D$. Erika

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/SOLUTION

SESSION : 2000-2001
(i) $E=\alpha y \sin x \hat{\jmath}+y^{2} \operatorname{Cos} x \hat{\imath}$

$$
\begin{aligned}
& \quad \Rightarrow \text { Cure }=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\kappa} \\
\partial / \partial x & \partial / \partial y & 0 \\
y^{2} \cos x & \alpha y \sin x & 0
\end{array}\right| \\
& \text { (ii) } I=\int_{(0,0)}^{\left(y^{2} \cos x\right) d x+(\beta y \sin x) d y}
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{k}\binom{\alpha y \cos x}{-2 y \cos x} \\
& =(\alpha-2) y \cos x \hat{k} \\
& =0 \text { if } \alpha=2
\end{aligned}
$$

(a) Combiner C to be $y=\frac{2}{\pi} x \quad\left(0 \leqslant x \leqslant \frac{\pi}{2}\right)$

Then subset for y to get :

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2}\left(\left(\frac{2}{\pi}\right)^{2} x^{2} \cos x+\beta\left(\frac{2}{\pi}\right) x \sin x\left(\frac{2}{\pi}\right)\right) d x \\
& =\left(\frac{2}{\pi}\right)^{2} \int_{0}^{\pi / 2}\left(x^{2} \cos x+\beta x \sin x\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { by ports. }\left(\frac{2}{\pi}\right)^{2}\{[\underbrace{x^{2} \sin x-\beta x \cos x}_{(\pi / 2)^{2}}]_{0}^{\pi / 2}-\int_{0}^{\pi / 2}(2 x \sin x-\beta \cos x) d x\} \\
& =\left(\frac{2}{\pi}\right)^{2}\{\left(\frac{\pi}{2}\right)^{2}-2([\underbrace{-x \cos x}_{z^{2 \pi 0}}]_{0}^{\pi / 2}+\int_{0}^{\pi / 2} \cos x d x)+\beta \int_{0}^{\pi / 2} \cos x d x\} \\
& =\left(\frac{2}{\pi}\right)^{2}\left\{\left(\frac{\pi}{2}\right)^{2}+(\beta-2)\right\}=1+\frac{4}{\pi^{2}}(\beta-2)
\end{aligned}
$$

(b) Let $y=\operatorname{Sin} x$ and subst. for y : $\quad\left(0 \leqslant x \leqslant \frac{\pi}{2}\right)$

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2}\left(\sin ^{2} x \cos x+\beta \sin ^{2} x \cos x\right) d x \\
& =(1+\beta)\left[\frac{\sin ^{3} x}{3}\right]_{0}^{\pi / 2}=\frac{1}{3}(1+\beta)
\end{aligned}
$$

Equating answer to $(a) \&(b): 1+\frac{4}{\pi^{2}}(\beta-2)=\frac{1}{3}+\frac{\beta}{3}$

$$
\Rightarrow \beta\left(\frac{4}{\pi^{2}}-\frac{1}{3}\right)=\frac{8}{\pi^{2}}-\frac{2}{3}=2\left(\frac{4}{\pi^{2}}-\frac{1}{3}\right)
$$

$\Rightarrow \beta=2$ FINAL PART: CurL $E=0 \Leftrightarrow \int_{C} F \cdot d r$ is path sc for. $B=2$ the answers to $(a) \&(b)$ must agree.

Setter: WAL-TON
checker: JAcOBS

Setter's signature: hebrew Walton
checker's signature: R.L Joeobr

MATHEMATICS FOR ENGINEERING STUDENTS
EXAMINATION QUESTION/SOLUTION
SESSION: 2000-2001
so $\quad \hat{\eta}= \pm\left(\hat{\jmath} \frac{d r}{d s}+\hat{\imath} \frac{d y}{d \xi}\right)$

$$
\therefore \quad \underline{u} \cdot \underline{\hat{n}}=Q \frac{d y}{d s}+P \frac{d x}{d s}
$$

$\therefore G . T$. can be re-expressed as

$$
\begin{aligned}
& \oint_{c}(\underline{u} \cdot \underline{\hat{n}}) d s=\iint_{R}(\operatorname{div} \underline{u}) d x d y \\
\underline{n}= & \underline{i} x^{2}+\hat{\jmath} y^{2} \Rightarrow \operatorname{siv} \underline{u}=2(x+y) \\
\therefore & \iint_{R} \sin \underline{u} d x d y=2 \iint_{n}(x+y) d x d y \\
= & 2 \iint r(\cos \theta+\sin \theta) r d r d \theta \\
= & 2 \int_{0}^{1} r^{2} d r \int_{0}^{\pi / 2}(\cos \theta+\sin \theta) d \theta \\
& \ldots 1 . . .
\end{aligned}
$$

$$
d x d y=r d r d \theta
$$

Became

$$
\left.\begin{aligned}
d x d y & =\left|\begin{array}{cc}
e & s \\
-r s & r e
\end{array}\right| \partial r d \theta
\end{aligned} \right\rvert\,
$$

Setter: J. \quad GIBBON
Checker: $\mathrm{A}=\mathrm{RR}$ 天 AT

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/SOLUTION

$$
\text { SESSION : } 2000-2001
$$

$$
P\left(A_{i} \mid B\right)=P\left(A_{i} \cap B\right) / P(B)=P\left(B \mid A_{i}\right) P\left(A_{i}\right) / P(B) \text { and }
$$

by law of total probabilities $P(B)=\sum_{j=1}^{k} P\left(B \mid A_{j}\right) P\left(A_{j}\right)$.
Hence $P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{h} P\left(B \mid A_{j}\right) P\left(A_{j}\right)}$
Let ok = test says'ok'; $F=$ faulty disk. Then

$$
\begin{array}{rll}
P(\text { ok } \mid \bar{F})=0.95 & P(\overline{0 k} \mid F)=0.8 & P(F)=0.05 \\
\text { so } P(\text { ok } \mid F)=0.2 & P(\bar{F})=0.95
\end{array}
$$

(i)

$$
\begin{aligned}
P(\text { Ok }) & =P(\text { on|F)P(F)+P(0k|可)P(可)} \\
& =(0.2 \times 0.05)+(0.95 \times .95)=0.9125
\end{aligned}
$$

(ii)

$$
\begin{aligned}
P(F \mid O k)=\frac{P(O k \mid F) P(F)}{P(O k \mid F) P(F)+P(O k \mid \bar{F}) P(\bar{F})} & =0.2 \times 0.05 / .9125 \\
& =0.01096 \text { to } 5 \mathrm{dp}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& P\left(\overline{o k}_{2} \mid F\right)=0.99 \\
& P(\text { accepted } \mid F)=P\left(o k_{1} \cap O k_{2} \mid F\right) \quad\left(O k_{1} \equiv O k\right) \\
&=P\left(O k_{1} \mid F\right) P\left(O k_{2} \mid F\right) \\
&=0.2 \times 0.01 \\
&=0.002 .
\end{aligned}
$$

MATHEMATICS FOR ENGINEERING STUDENTS
EXAMINATION QUESTION/SOLUTION
SESSION : 2000-2001
Please write on this side only, legibly and neath, between the margins

So

$$
\operatorname{cov}\{x, y]=\frac{1}{6}-\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{24} .
$$

(iv) $P_{x, y} \neq 0$ since $\cos \{x, y\}=1 / 24^{\text {. }}$. Hence x and y are not independent.

Setter: AT Walden
checker: DJ HAND

