UNIVERSITY OF LONDON

For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination for the Associateship.

PART II : MATHEMATICS 3 (ELECTRICAL ENGINEERING)

Wednesday 7th June 2000 2.00-5.00 pm

Answer EIGHT questions.
[Before starting, please make sure that the paper is complete; there should be 8 pages, with a total of 12 questions. Ask the invigilator for a replacement if your copy is faulty.]

1. Consider the mapping

$$
w=\frac{1}{z-2}
$$

from the z-plane $(z=x+i y)$ to the w-plane $(w=u+i v)$.
Find u and v in terms of x and y.
(i) Show that the circle in the z-plane

$$
(x-2)^{2}+y^{2}=a^{2}
$$

maps to a circle centred at $(0,0)$ and of radius a^{-1} in the w-plane.
(ii) Show that the straight line $y=x-2$ maps to the straight line $v=-u$ in the w-plane.
(iii) To what does the straight line $x=0$ map in the w-plane?
(iv) To what does the straight line $x=2$ map in the w-plane?
(v) Where are the fixed points of this mapping?
2. Consider the contour integral

$$
\oint_{C} \frac{e^{i m z}}{\left(z^{2}+1\right)^{2}} d z
$$

where the closed contour C consists of a semi-circle in the upper half of the complex plane and $m>0$.
Use the Residue Theorem to show that

$$
\int_{-\infty}^{\infty} \frac{\cos m x}{\left(x^{2}+1\right)^{2}} d x=\frac{\pi}{2}(m+1) e^{-m}
$$

The residue of a complex function $f(z)$ at a pole $z=a$ of multiplicity n is given by

$$
\lim _{z \rightarrow a} \frac{1}{(n-1)!}\left[\frac{d^{n-1}}{d z^{n-1}}\left\{(z-a)^{n} f(z)\right\}\right] .
$$

3. Consider the real integral

$$
I=\int_{0}^{2 \pi} \frac{d \theta}{(5-4 \cos \theta)^{2}} .
$$

Taking the contour C as the unit circle $z=e^{i \theta}$, show that

$$
I=-i \oint_{C} \frac{z d z}{(2 z-1)^{2}(z-2)^{2}}
$$

Hence show that

$$
I=\frac{10 \pi}{27}
$$

The residue of a complex function $f(z)$ at a pole $z=a$ of multiplicity n is given by

$$
\lim _{z \rightarrow a} \frac{1}{(n-1)!}\left[\frac{d^{n-1}}{d z^{n-1}}\left\{(z-a)^{n} f(z)\right\}\right] .
$$

4. Two functions $f(t)$ and $g(t)$ have Laplace transforms $\bar{f}(s)=\mathcal{L}\{f(t)\}$ and $\bar{g}(s)=\mathcal{L}\{g(t)\}$ respectively. If the convolution of $f(t)$ with $g(t)$ is defined as

$$
f * g=\int_{0}^{t} f(u) g(t-u) d u
$$

prove that

$$
\mathcal{L}\{f * g\}=\bar{f}(s) \bar{g}(s) .
$$

Show also that if

$$
\bar{g}(s)=\frac{1}{\left(1+s^{2}\right)^{2}}
$$

then

$$
g(t)=\frac{1}{2}(\sin t-t \cos t) .
$$

Hence show that for $s>0$

$$
\mathcal{L}^{-1}\left\{\frac{1}{s\left(1+s^{2}\right)^{2}}\right\}=1-\cos t-\frac{1}{2} t \sin t .
$$

5. If $\bar{f}(\omega)$ is the Fourier transform of $f(t)$, prove Parseval's equality

$$
\int_{-\infty}^{\infty}|f(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\bar{f}(\omega)|^{2} d \omega .
$$

The squarewave function $\Pi(t)$, the tent function $\Lambda(t)$, and the sinc-function $\operatorname{sinc}(t)$ are defined respectively by

$$
\begin{aligned}
& \Pi(t)=\left\{\begin{array}{cc}
1, & -1 / 2 \leq t \leq 1 / 2 \\
0 & \text { otherwise }
\end{array}\right. \\
& \Lambda(t)=\left\{\begin{array}{cc}
1+t, & -1 \leq t \leq 0 \\
1-t, & 0 \leq t \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

and

$$
\operatorname{sinc}(t)=\frac{\sin (t / 2)}{t / 2}, \quad-\infty<t<\infty .
$$

Show that $\bar{\Pi}(\omega)=\operatorname{sinc}(\omega)$ and $\bar{\Lambda}(\omega)=\operatorname{sinc}^{2}(\omega)$.
Also show that

$$
\int_{-\infty}^{\infty} \operatorname{sinc}^{2}(\omega) d \omega=2 \pi \quad \text { and } \quad \int_{-\infty}^{\infty} \operatorname{sinc}^{4}(\omega) d \omega=4 \pi / 3 .
$$

[The identity

$$
\delta\left(\omega-\omega^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{ \pm i\left(\omega-\omega^{\prime}\right) t} d t
$$

may be assumed, where δ represents the Dirac delta function.]
6. Given that $\bar{f}(s)=\mathcal{L}\{f(t)\}$ is the Laplace transform of $f(t)$, prove that when a is a constant

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=\bar{f}(s-a) \quad \operatorname{Re}(s)>a .
$$

A 2 nd order ordinary differential equation, with initial values, takes the form

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+8 x=\delta(t-1), \quad x=\frac{d x}{d t}=0 \quad \text { when } t=0
$$

where δ represents the Dirac delta function. Use the Laplace convolution theorem to show that

$$
x(t)=\left\{\begin{array}{lc}
\frac{1}{2} e^{-2(t-1)} \sin 2(t-1) & t>1 \\
0 & 0 \leq t \leq 1
\end{array}\right.
$$

satisfies the differential equation and its initial conditions.
7. The double integral I_{n} is given by

$$
I_{n}=\iint_{R_{n}} x y \mathbf{e}^{-\left(x^{2} / a^{2}+y^{2} / b^{2}\right)} d x d y, \quad a, b>0
$$

for $n=1$ and 2 , where the finite regions of integration R_{n} are given as follows:
R_{1} is the region bounded by the lines $x=0, x=a, y=0$ and $y=b$;
R_{2} is the region in the positive quadrant enclosed by the lines $x=0, y=0$ and the curve $x^{2} / a^{2}+y^{2} / b^{2}=1$.
(i) Sketch the regions of integration R_{1} and R_{2}.
(ii) Show that

$$
I_{1}=\frac{1}{4} a^{2} b^{2}\left(1-\frac{1}{\mathbf{e}}\right)^{2} .
$$

(iii) Calculate I_{2} by making the transformation

$$
x=a r \cos \theta, y=b r \sin \theta,
$$

and demonstrate that

$$
I_{1}-I_{2}=\left(\frac{a b}{2 \mathbf{e}}\right)^{2}
$$

8. If $\phi=x y z^{2}, \mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $f(r)$ is an arbitrary function of $r=|\mathbf{r}|$, evaluate
(i) $\operatorname{grad} \phi$,
(ii) $\operatorname{div} \mathbf{r}$,
(iii) $\operatorname{div}(\phi \mathbf{r})$,
(iv) $\quad \operatorname{curl}(f(r) \mathbf{r})$.
9. The curve C is given in parametric form by

$$
x=2+\cos \theta, \quad y=1+\sin \theta, \quad|\theta| \leq \pi / 2,
$$

and the vector function \mathbf{F} is defined by

$$
\mathbf{F}=\frac{x \mathbf{i}+y \mathbf{j}}{x^{2}+y^{2}}, \quad x^{2}+y^{2} \neq 0 .
$$

(i) Sketch the curve C.
(ii) Show that along C :

$$
x d x+y d y=(\cos \theta-2 \sin \theta) d \theta .
$$

(iii) Prove that $\operatorname{curl} \mathbf{F}=\mathbf{0}$, and find a potential function Φ such that $\mathbf{F}=\nabla \Phi$.
(iv) Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is tranversed anti-clockwise, by each of the following methods:
(a) use of the potential function found in (iii),
(b) direct evaluation, making use of the result obtained in (ii).
10. $P(x, y)$ and $Q(x, y)$ are continuous functions of x and y with continuous first partial derivatives in a simply connected region R with a piecewise smooth boundary C. Green's Theorem in a plane states that

$$
\oint_{C}(P d x+Q d y)=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y .
$$

If the vector $\mathbf{u}(x, y)$ is defined in terms of P and Q by

$$
\mathbf{u}(x, y)=\mathbf{i} P(x, y)+\mathbf{j} Q(x, y)
$$

show that Green's Theorem can be re-expressed as the two-dimensional version of Stokes' Theorem

$$
\oint_{C} \mathbf{u} \cdot d \mathbf{r}=\iint_{R}(\mathbf{k} \cdot \operatorname{curl} \mathbf{u}) d x d y
$$

If $Q=\frac{1}{2} x^{2}, P=\frac{1}{2} y^{2}$ and R is defined as being the area lying between the parabola $y=x^{2}$ and the straight line $y=x$, evaluate both sides of Stokes' Theorem showing that they each take the value $1 / 60$.
11. Let A_{1}, \ldots, A_{k} form a partition of a sample space and B be some event. Use the definition of conditional probability and the theorem of total probabilities to derive Bayes' formula for $P\left(A_{i} \mid B\right)$.

It is estimated that 0.5% of computer hard disks produced by a manufacturer are faulty. A method has been designed to test the disks to try to ascertain whether they are faulty or not. This test has a probability of 0.95 of giving a diagnosis of 'faulty' when applied to a faulty disk, and a probability of 0.10 of giving the same diagnosis when applied to a perfect disk.

A disk is chosen at random and tested.
(i) What is the probability that the test gives a diagnosis of 'faulty'?
(ii) Given a diagnosis of 'faulty', what is the probability the disk is in fact faulty?
(iii) Given a diagnosis of 'not faulty', what is the probability the disk is in fact perfect?
(iv) What is the probability the disk will be misclassified?
12. The annual profit, Y, (in millions of pounds) of a computer manufacturer is a function $g(X)$ of the availability, X, of microchips during the year. The availability X in a given year has an exponential distribution with probability density function

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

with $\lambda>0$. The profit Y is given by $Y=g(X)=2\left(1-e^{-2 X}\right)$.
(i) Write down the cumulative distribution function of $X, F_{X}(x)=P(X \leq x)$.
(ii) Show that the cumulative distribution function of $Y, F_{Y}(y)=P(Y \leq y)$ is given by $F_{Y}(y)=F_{X}\left(-\frac{1}{2} \ln \left[1-\frac{y}{2}\right]\right), 0 \leq y<2$.
(iii) Using the results in (i) and (ii), show that $F_{Y}(y)$ can thus be written as $F_{Y}(y)=1-\left[1-\frac{y}{2}\right]^{\lambda / 2}, 0 \leq y<2$.
(iv) Hence find the probability density function, $f_{Y}(y)$, of Y.
(v) Use the fact that $E\{Y\}=E\{g(X)\}$ to find the mean annual profit.

$$
\text { MATHS } 3-2000
$$

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/SOLUTION

SESSION: 1999/2000
Please write on this side only, legibly and neatly, between the margins

$$
\begin{aligned}
w & =\frac{1}{z-2}=\frac{1}{n-2+i y}=\frac{x-2-i y}{(x-2)^{2}+y^{2}} \\
\therefore \quad u & =\frac{x-2}{(x-2)^{2}+y^{2}} \quad v=\frac{-y}{(x-2)^{2}+y^{2}}
\end{aligned}
$$

(14)
(i) $u^{2}+v^{2}=\frac{1}{(x-2)^{2}+y^{2}}=1 / a^{2}$ on $(x-2)^{2}+y^{2}=a^{2}$ $n^{2}+v^{2}=a^{-2}$ is a circle centred at $(0,0)$ roadie a^{-1}.
(ii) $y=x-2$ means

$$
\begin{aligned}
& u=\frac{x-2}{2(x-2)^{2}}=\frac{1}{2(x-2)} \\
& v=\frac{-(x-1)}{2(x-2)^{2}}=-\frac{1}{2(x-2)} \\
& \text { Heme } \quad v=-u .
\end{aligned}
$$

(it)

$$
\begin{aligned}
x=0 \text { wee } \quad u= & \frac{-2}{y^{2}+4} \\
v & =\frac{-y}{y^{2}+4} \\
\therefore \quad u^{2}+v^{2}=\frac{1}{y^{2}+4} & =-9 u / 2 \\
\therefore(u+1 / 4)^{2}+v^{2} & =(1 / 4)^{2}
\end{aligned}
$$

A Circle, cured at $(-1 / 4,0)$, radius $1 / 4$.
(iv) $x=2 \quad u=0 \quad v=-1 / y$

A hive (vertices) which is the v-axis.
(y) Fixed pails of the map $w=\frac{1}{z-2}$ lie at solution of $\quad z=\frac{1}{z-2}$

$$
\therefore \quad 2^{2}-2 z=1 \text { or }(z-1)^{2}=2
$$

ic $z=1 \pm \sqrt{2}$ Two points on the mel ane rs.

Setter: J. \triangle. GIBBON
Checker: c itreiolion

SESSION: 1999/2000
(15)
H_{R} is the semil-circle
z-plane
 radium $R: ~ Z=R e^{i \Delta}$ $0 \leq \theta \leq \pi$

Contour C is complete sumi-cirale

$$
\oint_{c} \frac{e^{i m z}}{\left(z^{2}+1\right)^{2}} d z=\int_{-R}^{R} \frac{e^{i m x}}{\left(1+x^{2}\right)^{2}} d x+\int_{H_{n}} \frac{e^{i n z}}{\left(1+z^{2}\right)^{2}} d z
$$

Using Jordaens Lemma:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \int_{H_{2}} \frac{e^{i n t}}{\left(1+z^{2}\right)^{2}} d z & =0 \text { besant } \\
\therefore \quad \int_{-\infty}^{\infty} \frac{e^{i n x}}{\left(1+x^{2}\right)^{2}} d x & =\int_{-\infty}^{\infty} \frac{\cos \min d x}{\left(1+x^{2}\right)^{2}} \\
& =\lim _{k \rightarrow+} \oint_{c} \frac{e^{i m z}}{\left(1+z^{2}\right)^{2}} d z
\end{aligned}
$$

$$
\text { i) } m>0
$$

$$
\therefore f(2) \rightarrow 0 \text { as } R \rightarrow \infty
$$

iii) Sings are poles.
(fime-port vanishes) as a odd f)

USing the Rericive Thar.
$=2 \pi i \times\{$ Sm of Residing of poles in the super $1 / 2$-flem 3
Thai c is ours pole (double) at $t=+i$ in the upper $1 / 2$-plane.
Residue at $z=i$ is $\lim _{z \rightarrow i}\left[\frac{d}{d z}\left\{(z-i)^{2} \frac{e^{i m z}}{\left(z^{2} n\right)^{2}}\right\}\right]$

$$
\begin{aligned}
& =\lim _{z \rightarrow i} d z\left\{\frac{e^{i m z}}{(z+i)^{2}}\right\} \\
& =\lim _{z \rightarrow i}\left\{e^{i m z}\left[\frac{i m}{(z+i)^{2}}-\frac{2}{(z+i)^{3}}\right]\right\} \\
& =e^{-m}\left\{\frac{i m}{(2 i)^{2}}-\frac{2}{(2 i)^{3}}\right\} \\
& =-\frac{i}{4} e^{-m}\{m+1\}
\end{aligned}
$$

$$
\therefore \quad \int_{-\infty}^{\infty} \frac{\cos m x}{\left(1+x^{2}\right)^{2}} d x=\frac{\pi}{2} e^{-m}(m+1)
$$

Setter: J.D. GIBDON

EXAMINATION QUESTION / SOLUTION
SESSION: 1999/2000
\qquad

$$
\text { (ii) } \begin{aligned}
I & =\int_{0}^{2 \pi} \frac{d \theta}{(5-4 \cos \theta)^{2}} z \\
& =\oint_{\varepsilon} \frac{d z}{i z} \cdot \frac{1}{\left[5-2\left(z+\frac{1}{z}\right)\right]^{2}} \\
& =-i \oint_{c} \frac{z d z}{\left(5 z-2 z^{2}-2\right)^{2}} \\
\therefore I & =-i \oint_{c} \frac{z d z}{(2 z-1)^{2}(z-2)^{2}}
\end{aligned}
$$

Now wove that the integrant has 2 double probe, one at $z=1 / 2$, the other at $z=2$. The flutter ties
onside C so it docent cont.

Reissue of $f(z)$ at the double pole at $z=1 / 2$ is

$$
\begin{aligned}
& \lim _{z \rightarrow 1 / 2} \frac{d}{d t}\left\{(z-1 / 2)^{2} \cdot \frac{z}{(2 z-1)^{2}(z-2)^{2}}\right\} \\
& =\frac{1}{z \rightarrow 1 / 2} \frac{d}{d z}\left\{\frac{z}{(z-2)^{2}}\right\}=-\frac{1}{4} \lim _{z \rightarrow 1 / 2}\left(\frac{z+2}{(z-2)^{3}}\right) \\
& =-\frac{1}{4} \frac{5 / 2}{(-3 / 2)^{3}}=\frac{5}{27} \\
& \therefore I=2 \pi i \times-i \times \frac{5}{27}=\frac{10 \pi}{27}
\end{aligned}
$$

Setter: J.D. GIBBON

EXAMINATION QUESTION／SOLUTION
SESSION：1999／2000
Please write on this side only，legibly and neatly，between the margins
（18） $1(f+g)=\int_{0}^{\infty} e^{-J t}\left\{\int_{0}^{t} f(u) g(t-u) d u\right\} d t$
Exclude integration orders in the double nitegral

Put $t-u=6$ ，How

$$
\begin{aligned}
f(f * g) & =\int_{0}^{\infty} f(u)\left(\int_{0}^{\infty} e^{-s(\theta+u)} g(\theta) d \theta\right) d u \xrightarrow{\longrightarrow} e_{0} \\
& =\int_{0}^{\infty} f(u) e^{-s u} d u \int_{0}^{\infty} g(\theta) d \theta=\bar{f}(s) \bar{g}(s)
\end{aligned}
$$

i，C_{i}

$$
\begin{aligned}
& L\left(f(\omega t)=\frac{\omega}{s^{2}+\omega^{2}}\right. \\
\therefore & -f(1-\cos \omega)=\frac{1}{s^{2}+\omega^{2}}-\frac{2 \omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}
\end{aligned}
$$

$$
I(\text { since })=\frac{\omega}{s^{2}+\omega^{2}} \quad \text { Diffu. w.r.t. } \omega
$$

Now put $\omega=1$ to get
（c）Unity the convolution The θ choosing

$$
\begin{aligned}
\vec{f}(s)=1 / s & \longrightarrow f(t)=1 \\
\bar{y}(1)=\frac{1}{\left(1+s^{2}\right)^{2}} & \longrightarrow g(t)=\frac{1}{2}(\sin t-t \cos t) \text { as ass } \\
\therefore \mathcal{I}^{-1}\left(\frac{1}{s\left(1+s^{2}\right)^{2}}\right) & =f * g=\frac{1}{2} \int_{0}^{t}(\sin t-t \cos u) .1 . d u \\
& =\frac{1}{2}\left[[-\cos u]_{0}^{t}-\int_{0}^{t} u \alpha(\sin x)\right] \\
& =\frac{1}{2}\left\{1-\cos t-[u \sin u]_{0}^{t}-[\cos u]_{0}^{t}\right\} \\
& =1-\cos t-\frac{1}{2} t \sin t
\end{aligned}
$$

（b）Alternately，

$$
\text { Let } \bar{f}(s)=\bar{g}(-)=\frac{1}{1+s^{2}}
$$

Then， f_{y} G心がintron

Setter：T．D．GIMBON
Checker：$H=25=\Omega 2$

$$
\begin{aligned}
& \left.\therefore \quad \frac{1}{\left(s^{2}+1\right)}\right)=g(t)=\frac{1}{2}(\sin t-t \cos t) \\
& \begin{array}{r}
p^{-1}\left(\frac{1}{\left(1+e^{2}\right)^{2}}\right)=\int_{0}^{t} \operatorname{Sinu\operatorname {Sin}(t-2)dt} \\
=-(\operatorname{Sint}-1,-t)
\end{array}
\end{aligned}
$$

SESSION: 1999/2000
Please write on this side only, legibly and neatly, between the margins
(17)

$$
\begin{aligned}
& \text { 7) (i) } \vec{f}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega t} f(t) d t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega t} \tilde{f}(\omega) d \omega \\
& \int_{-\infty}^{\infty} f(t) f^{*}(t) d t=\left(\frac{1}{2 \pi}\right)^{2} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} e^{i \omega t} \bar{f}(\omega) d \omega\right)\left(\int_{-\infty}^{\infty} e^{-i} \omega^{\prime} t f^{*}\left(\omega^{\prime}\right) d \omega^{\prime}\right) d t \\
& =\left(\frac{1}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \bar{f}(\omega)\{\int_{-\infty}^{\infty} \bar{f}^{*}\left(\omega^{\prime}\right) \underbrace{\left.\left(\int_{-\infty}^{\infty} e^{i\left(\omega-\omega^{\prime}\right) d t} d t\right) d \omega^{\prime}\right\} d \omega}_{2 \pi} \underbrace{\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{f}(\omega) \bar{f}^{+}(\omega) d \omega} .
\end{aligned}
$$

because $\int_{-\infty}^{\infty} \bar{f}^{*}\left(\omega^{\prime}\right) \delta\left(\omega-\omega^{\prime}\right) d \omega^{\prime}=f^{*}(\omega)$
(ii)

$$
\begin{aligned}
\bar{\pi}(\omega) & =\int_{-1 / 2}^{1 / 2} e^{-i u t} \cdot 1 \cdot d \omega \quad \text { (zen ore } \\
& =-\frac{1}{i \omega}\left(e^{-i \omega / 2}-e^{i \omega / 2}\right)=\operatorname{sinc}(\omega)
\end{aligned}
$$

(zen on rest of the

$$
\begin{aligned}
& \text { (iii) } \\
& \bar{\Lambda}(\omega)=\int_{-1}^{0}(1+t) e^{-i \omega t} d t+\int_{0}^{1}(1-t) e^{-i \omega t} d t \\
& =\int_{-1}^{1} e^{-i \omega t} d t-2 \int_{0}^{1} t \cos \omega t d t \\
& =\frac{2}{\omega} \sin \omega-\frac{2}{\omega} \int_{0}^{1} t d(\sin \omega t) \\
& =\frac{2}{\omega} \sin \omega-\frac{2}{\omega}\left[[t \sin \omega t]_{0}^{1}+\left[\frac{\cos \omega t}{\omega}\right]_{0}^{1}\right] \\
& =\frac{2}{\omega^{2}}(1-\cos \omega)=\sin ^{2} \omega \text { by double age form } \\
& \text { (iii) Use Parseval afoul } \frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{sinc}^{2} w d w=\int_{-\infty}^{\infty} \pi^{2}(t) d t=1 \text {. } \\
& \text { (iv) } \frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{Sinc}{ }^{4} \omega d \omega=\int_{-\infty}^{\infty} \Lambda^{2}(t) d t=\int_{-1}^{0}(1+t)^{2} d t+\int_{0}^{1}(1-t)^{2} d t \\
& =\int_{-1}^{1}\left(1+t^{2}\right) d t+2 \int_{-1}^{1} t d t-2 \int_{0}^{1} t d t \\
& =8 / 3+\left[t^{2}\right]_{-1}^{0}-\left[t^{2}\right]_{0}^{1}=8 / 3-2=2 / 3 \text {. }
\end{aligned}
$$

SESSION ：1999／2000
（19）

$$
\begin{aligned}
\mathcal{L}\left(e^{a b} f(t)\right) & =\int_{0}^{\infty} e^{-s t} e^{a t} f(t) \alpha t \\
& =\int_{0}^{\infty} e^{-(s-a) t} f(t) d t \\
& =\bar{f}(s-a)
\end{aligned}
$$

$$
s>a .
$$

$$
\mathcal{L}(\ddot{x}+4 \dot{x}+\delta x)=\mathcal{Z}(s(t-1)) \quad x(0)=\dot{x}(0)=0 .
$$

from Tiles $\mathcal{L} \ddot{x}=s^{2} \bar{x}(s)-s x(0)-\dot{x}(0) \doteq s^{2} x^{-}(s)$

$$
\begin{align*}
I x & =s \bar{x}(s)-x(0) \\
\therefore\left(s^{2}+4 s+\delta\right) \bar{x}(s) & =\int_{0}^{\infty} t^{-3 t} \delta(t-1) d t=e^{-s} \\
\therefore \quad \bar{x}(s) & =\frac{e^{-s}}{(s+2)^{2}+4} \\
& =\frac{1}{2} e^{-s} \cdot\left(\frac{2}{(s+2)^{2}+2^{2}} \cdot\right) \tag{*}
\end{align*}
$$

Now $I^{-1}\left(\frac{2}{s^{2}+2^{2}}\right)=\sin 2 t$
\therefore io $\quad Z^{-1}\left(\frac{2}{(s+2)^{2}+2}\right)=\sin \left(2 H e^{-2 t} \quad\right.$ where $a=2$
If $f(t)=\frac{1}{2} e^{-2 t} \sin 2 t \quad g(t)=\delta(t-1)$
then
where $\bar{g}(s)=e^{-s}$

$$
\begin{aligned}
x(t) & =\int_{0}^{t} g(u) f(t-u) d u \quad(\text { Solving }(x) \text { by cons. The.) } \\
& =\frac{1}{2} \int_{0}^{t} \delta(u-1) e^{-2(t-u)} \sin 2(t-u) d u \\
\underline{x(t)} & =\left\{\begin{array}{ll}
\frac{1}{2} e^{-2(t-1)} \sin 2(t-1) & t>1 \\
& = \begin{cases}0 & 0 \leq 1\end{cases}
\end{array} \$. \begin{array}{ll}
x &
\end{array}\right.
\end{aligned}
$$

Setter：J．D．GIBBON
Checker：カニ゙いだが

Please write on this side only, legibly and neatly, between the margins
(i)

(iii)

$$
\operatorname{so}, d r d y=a \operatorname{r}-d r d \theta
$$

$$
\begin{aligned}
a n \theta I_{2} & =\int_{\theta=0}^{\pi / 2} \int_{r=0}^{1}(\lambda r \cos \theta)(b \cdot \sin \theta) e^{-r^{2}} a t r d r d \theta \\
& =a^{2} t^{2}\left(\int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta\right)\left(\int_{0}^{1} r^{3} e^{-r^{2}} d r\right)
\end{aligned}
$$

$$
=a^{2} t^{2}\left[\frac{\sin ^{2} \theta}{2}\right]_{0}^{\pi / 2}\left\{\left[-\frac{1}{2} r^{2} e^{-r^{2}}\right]_{0}^{1}+\int_{0}^{1} 2 r \cdot \frac{1}{2} e^{-r^{2}} d r\right\}
$$

$$
=\frac{a^{2} t^{2}}{2}\left\{-\frac{1}{2} e^{-1}+\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{1}\right\}
$$

$$
=\frac{a^{2} t^{2}}{4}\left(1-2 e^{-1}\right)
$$

$$
\text { Than } I_{1}-I_{2}=\frac{a^{2} k^{2}}{4}\left(\frac{1}{e^{2}}+1^{\prime}-\frac{2}{e}+\frac{2}{e}-1\right)
$$

$$
=\left(\frac{a b}{2 e}\right)^{2}
$$

Setter: A.G. WALTON
Setters signature: Unelneur Walton

$$
\begin{aligned}
& x=\operatorname{arcos} \theta ; y=\operatorname{br} \sin \theta \quad r^{2}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a_{2}^{2}} \quad \text {. } \quad \text { require } \leqslant \theta \leqslant \frac{\pi}{2} \\
& J=\left|\begin{array}{cc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial u}{\partial r} & \frac{\partial u}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
a \cos \theta & -\operatorname{ar} \sin \theta \\
t \sin \theta & k r-\cos \theta
\end{array}\right|=\begin{array}{c}
\operatorname{abr}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
=a b r
\end{array}
\end{aligned}
$$

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/SOLUTION

SESSION: 1999/2000
(i) $\operatorname{div} r=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3$
(ii) div $(\phi r)=\frac{\partial}{\partial x}(\phi x)+\frac{\partial}{\partial y}(\phi y)+\frac{\partial}{\partial z}(\phi z)$

$$
\begin{aligned}
& =\frac{\partial}{\partial x}(9 x) 2 x y z^{2}+2 y x z^{2}+3 x y z^{2}=7 x y z^{2} \\
& =2 x+3
\end{aligned}
$$

	SOLUTION 22
	3
2	

$$
\begin{array}{r}
\operatorname{Curi}(f(r) r)=\left|\begin{array}{ccc}
\frac{i}{2} & \underline{j} & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f(r) x & f(r) y & f(r) z
\end{array}\right| \\
=i\left(z \frac{\partial f}{\partial x}-y \frac{\partial f}{\partial z}\right) \quad-\underline{j}\left(z \frac{\partial f}{\partial x}-x \frac{\partial f}{\partial z}\right) \\
+\underline{k}\left(y \frac{\partial f}{\partial x}-x \frac{\partial f}{\partial y}\right)
\end{array}
$$

bun $\frac{\partial f}{\partial y}=f^{\prime}(r) \cdot \frac{\partial r}{y}=\frac{y f^{\prime}}{r}$ eh. Since $\frac{\partial r}{\partial y}=\frac{y}{r}$
So $\operatorname{Curl}(f(r) r)=i\left(\frac{z y}{r} f^{\prime}-\frac{y z}{r} f^{\prime}\right)-j\left(\frac{z x f^{\prime}}{r}-\frac{x z f^{\prime}}{r}\right)$

$$
+h\left(\frac{y x}{r} f^{\prime}-\frac{x y}{r} f^{\prime}\right)
$$

$$
=0
$$

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/SOLUTION

SESSION : 1999/2000

(ii) $x d x+y d y=(2+\cos \theta)(-\sin \theta d \theta)+(1+\sin \theta) \cos \theta d \theta$ $=(\underline{\cos \theta-2 \sin \theta)} d \theta$
(iii)

$$
\begin{gathered}
\text { Cure } I=\left|\begin{array}{ccc}
\hat{i} & \hat{\jmath} & \hat{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
\frac{x}{x^{2}+y^{2}} & \frac{y}{x^{2}+y^{2}} & 0
\end{array}\right|=\hat{k}\left(\begin{array}{c}
-2 x y-(-2 x y) \\
\left(x^{2}+y^{2}\right)^{2} \\
\left(x^{2}+y^{2}\right)^{2}
\end{array}\right) \\
=0
\end{gathered}
$$

wite $F=\nabla \Phi$. Then $\frac{\partial \Phi}{\partial x}=\frac{x}{x^{2}+y^{2}}$

$$
\Rightarrow \Phi=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+h(x)
$$

Ther $D=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+C$

$$
\Rightarrow \Phi=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+g(y)
$$

(iv) (b)

$$
\begin{aligned}
& \begin{array}{l}
\int_{C} E \cdot d r=\int_{0}^{(d x \cdot \hat{i}+d y \hat{j})} \frac{x d x+y d y}{x^{2}+y^{2}}= \\
\int_{-\pi / 2}^{\pi / 2} \frac{(\cos \theta-2 \sin \theta) d \theta}{4+\cos ^{2} \theta+4 \cos \theta+1+2 \sin \theta+\sin ^{2} \theta}
\end{array} \\
& \begin{aligned}
=\int_{-\pi / 2}^{\pi / 2} \frac{\cos \theta-2 \sin \theta}{6+4 \cos \theta+2 \sin \theta} d \theta & =\left[\frac{1}{2} \ln (4 \cos \theta+2 \sin \theta+6)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\
& =\frac{1}{2} \ln \left(\frac{8}{4}\right)=\frac{1}{2} \ln 2
\end{aligned} \\
& =\frac{1}{2} \ln \left(\frac{8}{4}\right)=\frac{1}{2} \ln 2 \\
& \text { us.ugg (i.) } \\
& {\left[\begin{array}{l}
\text { use } t=\tan \frac{1}{2} \theta \\
\text { sibstan:ionger }
\end{array}\right]} \\
& =\int_{-\pi / 2}^{\pi / 2} \frac{(\cos \theta-2 \sin \theta) d \theta}{4+\cos ^{2} \theta+4 \cos \theta+1+2 \sin \theta+\sin ^{2} \theta}
\end{aligned}
$$

(a)

$$
\begin{aligned}
\text { (a) } \int_{C} E \cdot d r=\int_{C}^{u s i n g}(i n) \\
V
\end{aligned} d r=[\Phi]_{C}=\frac{\Phi}{2^{n}(2,2)-\Phi(2,0)} .
$$

(Touts
(a) 8 (b) winterchenjes).

Setter: A.G. WALTON

Please write on this side only, legibly and neath, between the margins

Now $\quad \sigma=\frac{1}{2} x^{2}, \quad P=\frac{1}{2} y^{2}$

$$
\therefore \hat{i} \cdot \operatorname{con} \underline{u}=x-y
$$

$$
\therefore \iint_{R}^{\prime} \underline{y} \cdot \cos \underline{u} d x d y=\iint_{R}(x-y) d x d y
$$

$$
=\int_{0}^{1}\left\{\int_{x^{2}}^{x}(x-y) d y\right\} d x
$$

$$
=\int_{0}^{1}\left[x y-\frac{1}{2} y^{2}\right]_{x^{2}}^{x^{2}} d x
$$

$$
=\int_{0}^{1}\left(\frac{1}{2} x^{2}-x^{3}+\frac{1}{2} x^{4}\right) d x=\frac{1}{60}
$$

$$
\oint_{c} \underline{u} \cdot d s=1 \oint_{c}\left(y^{2} d x+x^{2} d y\right)
$$

$$
=\frac{1}{2} \int_{0}^{1}\left(x^{4} d x+2 x^{3} d x\right)+\frac{1}{2} \int_{1}^{0}\left(x^{2} d x+x^{2} d x\right)
$$

$$
=\frac{1}{2}\left(\frac{1}{5}+\frac{1}{2}\right)-\frac{1}{3}
$$

$$
=\frac{7}{20}-1 / 3=\frac{21-20}{60}
$$

$$
=1 / 60
$$

$$
\begin{aligned}
& \text { SESSION: 1999/2000 } \\
& \begin{array}{r}
\text { MATHEMATICS FOR ENGINEERING } \\
\text { EXAMINATION QUESTION / SOL } \\
\text { SESSION : } 1999 / 20 \\
\text { Please write on this side only, legibly and neath, be } \\
\hline G . T \quad \delta(P d x+Q d y)=\iint_{R}\left(Q_{x}-P_{y}\right) d x d y
\end{array} \\
& \underline{u}=\underline{\hat{\imath}} P+\hat{\jmath} Q \quad \therefore \quad c \text { url } \underline{u}=\hat{\hat{k}}\left(Q_{x}-P_{y}\right) \\
& \therefore R H S=\iint_{R}(\underline{\hat{k}} \cdot \operatorname{curl} \underline{u}) d x d y \\
& \underline{r}=\underline{\imath} x+\hat{\jmath} y \Rightarrow d \underline{r}=\underline{\imath} d x+\underline{j} d y \\
& \therefore L H S=\oint_{c} \underline{u} \cdot d r
\end{aligned}
$$

SESSION: 1999/2000

$$
P\left(A_{i} \mid B\right)=P\left(A_{i} \cap B\right) / P(B)=P\left(B \mid A_{i}\right) P\left(A_{i}\right) / P(B) \text { and }
$$

by law of total probabilities $P(B)=\sum_{j=1}^{k} P\left(B \mid A_{j}\right) P\left(A_{j}\right)$.
Hence $P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{k} P\left(B \mid A_{j}\right) P\left(A_{j}\right)}$.
Let $T=$ test is positive $; F=$ disk is faulty.

$$
\begin{array}{ll}
P(T \mid F)=0.95 & P(F)=0.005 \\
P(T \mid F)=0.10 &
\end{array}
$$

(i)

$$
\begin{aligned}
P(T) & =P(T \mid F) P(F)+P(T \mid \bar{F}) P(\bar{F}) \\
& =(0.95 \times 0.005)+(0.10 \times 0.995)=0.10425
\end{aligned}
$$

(ii) $P(F \mid T)=\frac{P(T \mid F) P(F)}{P(T \mid F) P(F)+P(T \mid \bar{F}) P(\bar{F})}=\frac{0.95 \times 0.005}{0.10425}=0.04556^{\text {. }}$
(iii)

$$
P(\bar{F} \mid \bar{T})=\frac{P(\bar{T} \mid \bar{F}) P(\bar{F})}{P(\bar{F})}=\frac{0.9 \times 0.995}{1-0.10425}=0.99972
$$

(iv)

$$
\begin{aligned}
P(\text { misclassified }) & =P(T \cap \bar{F})+P(\bar{T} \cap F) \\
& =P(T \mid \bar{F}) P(\bar{F})+P(\bar{T} \mid F) P(F) \\
& =(0.1 \times 0.995)+(0.05 \times 0.005) \\
& =0.09975
\end{aligned}
$$

Setter: ATWalde
checker: SG.Wallear EXAMINATION QUESTION/SOLUTION

SESSION: 1999/2000
Please write on this side only, legibly and neath, between the margins
(i) $F_{x}(x)=\int_{0}^{x} \lambda e^{-\lambda y} d y=-\left.e^{-\lambda y}\right|_{0} ^{x}=1-e^{-\lambda x}$ $0 \leqslant x<\infty$
(ii)

$$
\begin{aligned}
F_{Y}(y)=P(Y \leqslant y) & =P\left(1-e^{-2 x} \leqslant y / 2\right) \\
& =P\left(e^{-2 x} \geqslant 1-y / 2\right) \\
& =P\left(x \leqslant-\frac{1}{2} \ln (1-y / 2)\right) \\
& =F_{x}\left(-\frac{1}{2} \ln [1-y / 2]\right) .
\end{aligned}
$$

Note $0 \leq x<\infty \Rightarrow 0<e^{-2 x} \leq 1 \Rightarrow 0 \leq 1-e^{-2 x}<1 \Rightarrow 0 \leq y<2$.
(iii)

$$
\begin{aligned}
F_{y}(y) & =F_{x}\left(-\frac{1}{2} \ln [1-y / 2]\right) \\
& =1-\exp \left(\frac{\lambda}{2} \ln \left(1-\frac{y}{2}\right)\right)=1-\exp \left(\ln \left(1-\frac{y}{2}\right)^{\lambda / 2}\right) \\
& =1-\left[1-\frac{y}{2}\right]^{\lambda / 2}, \quad 0 \leq y<2 .
\end{aligned}
$$

(iv)

$$
\begin{aligned}
f_{Y}(y)=F_{Y}^{\prime}(y) & =\frac{d}{d y}\left\{1-\left[1-\frac{y}{2}\right]^{\lambda / 2}\right] \\
& =\frac{\lambda}{4}\left[1-\frac{y}{2}\right]^{(\lambda / 2)-1} \quad 0 \leq y<2
\end{aligned}
$$

(v)

$$
\begin{aligned}
E\{y\} & =E\{g(x)]=E\left\{2\left(1-e^{-2 x}\right)\right\} \\
& =\int_{0}^{\infty} 2\left(1-e^{-2 x}\right) \lambda e^{-\lambda x} d x \\
& =2 \lambda \int_{0}^{\infty} e^{-\lambda x}-e^{-(2+\lambda) x} d x \\
& =2 \lambda\left[\frac{1}{\lambda}-\frac{1}{2+\lambda}\right]=\frac{4}{2+\lambda} .
\end{aligned}
$$

checker: Sin.

